A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine

Document Type : Review Article(s)

Authors

1 Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran

2 Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

3 Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran

4 1.Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran 2. Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran

10.34172/ahj.2023.1307

Abstract

Background: Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage 
manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used 
behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to 
spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive 
deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be 
responsible for MA-induced NOR alterations. 
Methods: A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the 
past 10 years. 
Findings: The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, 
it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of 
monoaminergic systems. 
Conclusion: NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new 
therapeutic agents in MA-addicted individuals.

Keywords


  1. Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal 
    plasticity and hippocampus-dependent learning and 
    memory: contributions to development and maintenance of 
    addiction. Learn Mem. 2016;23(10):515-33. doi: 10.1101/
    lm.042192.116.
    2. Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson 
    JH, et al. Neurocognitive effects of methamphetamine: 
    a critical review and meta-analysis. Neuropsychol Rev. 
    2007;17(3):275-97. doi: 10.1007/s11065-007-9031-0.
    3. Baicy K, London ED. Corticolimbic dysregulation and chronic 
    methamphetamine abuse. Addiction. 2007;102 Suppl 1:5-15. 
    doi: 10.1111/j.1360-0443.2006.01777.x.
    4. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, 
    et al. Ginsenoside Re rescues methamphetamine-induced 
    oxidative damage, mitochondrial dysfunction, microglial 
    activation, and dopaminergic degeneration by inhibiting the 
    protein kinase Cδ gene. Mol Neurobiol. 2014;49(3):1400-21. 
    doi: 10.1007/s12035-013-8617-1.
    5. Moratalla R, Khairnar A, Simola N, Granado N, GarcíaMontes JR, Porceddu PF, et al. Amphetamine-related drugs 
    neurotoxicity in humans and in experimental animals: 
    main mechanisms. Prog Neurobiol. 2017;155:149-70. doi: 
    10.1016/j.pneurobio.2015.09.011.
    6. Beirami E, Oryan S, Seyedhosseini Tamijani SM, Ahmadiani 
    A, Dargahi L. Intranasal insulin treatment alleviates 
    methamphetamine induced anxiety-like behavior and 
    neuroinflammation. Neurosci Lett. 2017;660:122-9. doi: 
    10.1016/j.neulet.2017.09.026.
    7. Davis KE, Easton A, Eacott MJ, Gigg J. Episodic-like memory 
    for what-where-which occasion is selectively impaired in the 
    3xTgAD mouse model of Alzheimer’s disease. J Alzheimers 
    Dis. 2013;33(3):681-98. doi: 10.3233/jad-2012-121543.
    8. Burbacher TM, Grant KS. Measuring infant memory: Utility 
    of the visual paired-comparison test paradigm for studies 
    in developmental neurotoxicology. Neurotoxicol Teratol. 
    2012;34(5):473-80. doi: 10.1016/j.ntt.2012.06.003.
    9. Ennaceur A. One-trial object recognition in rats and mice: 
    methodological and theoretical issues. Behav Brain Res. 
    2010;215(2):244-54. doi: 10.1016/j.bbr.2009.12.036.
    10. Antunes M, Biala G. The novel object recognition memory: 
    neurobiology, test procedure, and its modifications. Cogn 
    Process. 2012;13(2):93-110. doi: 10.1007/s10339-011-
    0430-z.
    11. Ennaceur A, Delacour J. A new one-trial test for neurobiological 
    studies of memory in rats. 1: behavioral data. Behav Brain 
    Res. 1988;31(1):47-59. doi: 10.1016/0166-4328(88)90157-x.
    12. Grayson B, Leger M, Piercy C, Adamson L, Harte M, Neill JC. 
    Assessment of disease-related cognitive impairments using the 
    novel object recognition (NOR) task in rodents. Behav Brain 
    Res. 2015;285:176-93. doi: 10.1016/j.bbr.2014.10.025.
    13. Lueptow LM. Novel object recognition test for the investigation 
    of learning and memory in mice. J Vis Exp. 2017(126):55718. 
    doi: 10.3791/55718.
    14. Gaskin S, Tardif M, Cole E, Piterkin P, Kayello L, Mumby 
    DG. Object familiarization and novel-object preference in 
    rats. Behav Processes. 2010;83(1):61-71. doi: 10.1016/j.
    beproc.2009.10.003.
    15. Cohen SJ, Stackman RW Jr. Assessing rodent hippocampal 
    involvement in the novel object recognition task. A review. 
    Behav Brain Res. 2015;285:105-17. doi: 10.1016/j.
    bbr.2014.08.002.
    16. Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, 
    Dargahi L. Effect of three different regimens of repeated 
    methamphetamine on rats’ cognitive performance. Cogn 
    Process. 2018;19(1):107-15. doi: 10.1007/s10339-017-0839-
    0.
    17. Beirami E, Oryan S, Seyedhosseini Tamijani SM, Ahmadiani 
    A, Dargahi L. Intranasal insulin treatment restores cognitive 
    deficits and insulin signaling impairment induced by 
    repeated methamphetamine exposure. J Cell Biochem. 
    2018;119(2):2345-55. doi: 10.1002/jcb.26398.
    18. Aggleton JP, Albasser MM, Aggleton DJ, Poirier GL, Pearce 
    JM. Lesions of the rat perirhinal cortex spare the acquisition 
    of a complex configural visual discrimination yet impair 
    object recognition. Behav Neurosci. 2010;124(1):55-68. doi: 
    10.1037/a0018320.
    19. Hammond RS, Tull LE, Stackman RW. On the delay-dependent 
    involvement of the hippocampus in object recognition 
    memory. Neurobiol Learn Mem. 2004;82(1):26-34. doi: 
    10.1016/j.nlm.2004.03.005.
    20. Christoffersen GR, Simonyi A, Schachtman TR, Clausen 
    B, Clement D, Bjerre VK, et al. MGlu5 antagonism impairs 
    exploration and memory of spatial and non-spatial stimuli in 
    rats. Behav Brain Res. 2008;191(2):235-45. doi: 10.1016/j.
    bbr.2008.03.032.
    21. Uslaner JM, Parmentier-Batteur S, Flick RB, Surles NO, 
    Lam JS, McNaughton CH, et al. Dose-dependent effect 
    of CDPPB, the mGluR5 positive allosteric modulator, on 
    recognition memory is associated with GluR1 and CREB 
    phosphorylation in the prefrontal cortex and hippocampus. 
    Neuropharmacology. 2009;57(5-6):531-8. doi: 10.1016/j.
    neuropharm.2009.07.022.
    22. Nelson AJ, Thur KE, Marsden CA, Cassaday HJ. Dissociable 
    roles of dopamine within the core and medial shell of the 
    nucleus accumbens in memory for objects and place. Behav 
    Neurosci. 2010;124(6):789-99. doi: 10.1037/a0021114.
    23. Ghazvini H, Shabani M, Asadi-Shekaari M, Khalifeh 
    S, Esmaeilpour K, Khodamoradi M, et al. Estrogen and 
    progesterone replacement therapy prevent methamphetamineinduced synaptic plasticity impairment in ovariectomized 
    rats. Addict Health. 2016;8(3):145-56.
    24. Khalifeh S, Khodamoradi M, Hajali V, Ghazvini H, Eliasy 
    L, Kheradmand A, et al. Naloxone ameliorates spatial 
    memory deficits and hyperthermia induced by a neurotoxic 
    methamphetamine regimen in male rats. Galen Med J. 
    2019;8:e1182. doi: 10.31661/gmj.v0i0.1182.
    25. Rafaiee R, Ahmadiankia N, Mousavi SA, Rezaeian L, 
    Niroumand Sarvandani M, Shekari A, et al. Inhalant selfadministration of methamphetamine: the most similar model 
    to human methamphetamine addiction. Iran J Psychiatry 
    Behav Sci. 2019;13(3):e90561. doi: 10.5812/ijpbs.90561.
    26. Madden LJ, Flynn CT, Zandonatti MA, May M, Parsons 
    LH, Katner SN, et al. Modeling human methamphetamine 
    exposure in nonhuman primates: chronic dosing in the rhesus 
    macaque leads to behavioral and physiological abnormalities. 
    Neuropsychopharmacology. 2005;30(2):350-9. doi: 10.1038/
    sj.npp.1300575.
    27. Bisagno V, Ferguson D, Luine VN. Short toxic 
    methamphetamine schedule impairs object recognition task 
    in male rats. Brain Res. 2002;940(1-2):95-101. doi: 10.1016/
    s0006-8993(02)02599-4.
    28. Schröder N, O’Dell SJ, Marshall JF. Neurotoxic 
    methamphetamine regimen severely impairs recognition 
    memory in rats. Synapse. 2003;49(2):89-96. doi: 10.1002/
    syn.10210.
    29. Belcher AM, O’Dell SJ, Marshall JF. Impaired object 
    recognition memory following methamphetamine, 
    but not p-chloroamphetamine- or d-amphetamineinduced neurotoxicity. Neuropsychopharmacology.2005;30(11):2026-34. doi: 10.1038/sj.npp.1300771.
    30. Belcher AM, O’Dell SJ, Marshall JF. A sensitizing regimen of 
    methamphetamine causes impairments in a novelty preference 
    task of object recognition. Behav Brain Res. 2006;170(1):167-
    72. doi: 10.1016/j.bbr.2006.02.025.
    31. He J, Yang Y, Yu Y, Li X, Li XM. The effects of chronic 
    administration of quetiapine on the methamphetamineinduced recognition memory impairment and dopaminergic 
    terminal deficit in rats. Behav Brain Res. 2006;172(1):39-45. 
    doi: 10.1016/j.bbr.2006.04.009.
    32. Marshall JF, Belcher AM, Feinstein EM, O’Dell SJ. 
    Methamphetamine-induced neural and cognitive changes 
    in rodents. Addiction. 2007;102 Suppl 1:61-9. doi: 
    10.1111/j.1360-0443.2006.01780.x.
    33. Herring NR, Schaefer TL, Gudelsky GA, Vorhees CV, Williams 
    MT. Effect of + -methamphetamine on path integration 
    learning, novel object recognition, and neurotoxicity in 
    rats. Psychopharmacology (Berl). 2008;199(4):637-50. doi: 
    10.1007/s00213-008-1183-y.
    34. Lu P, Mamiya T, Lu L, Mouri A, Niwa M, Kim HC, et al. Silibinin 
    attenuates cognitive deficits and decreases of dopamine and 
    serotonin induced by repeated methamphetamine treatment. 
    Behav Brain Res. 2010;207(2):387-93. doi: 10.1016/j.
    bbr.2009.10.024.
    35. Grace CE, Schaefer TL, Herring NR, Graham DL, Skelton MR, 
    Gudelsky GA, et al. Effect of a neurotoxic dose regimen of 
    ( + )-methamphetamine on behavior, plasma corticosterone, 
    and brain monoamines in adult C57BL/6 mice. Neurotoxicol 
    Teratol. 2010;32(3):346-55. doi: 10.1016/j.ntt.2010.01.006.
    36. Melo P, Magalhães A, Alves CJ, Tavares MA, de Sousa 
    L, Summavielle T, et al. Methamphetamine mimics the 
    neurochemical profile of aging in rats and impairs recognition 
    memory. Neurotoxicology. 2012;33(3):491-9. doi: 10.1016/j.
    neuro.2012.03.002.
    37. North A, Swant J, Salvatore MF, Gamble-George J, Prins 
    P, Butler B, et al. Chronic methamphetamine exposure 
    produces a delayed, long-lasting memory deficit. Synapse. 
    2013;67(5):245-57. doi: 10.1002/syn.21635.
    38. Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND. Effects 
    of chronic methamphetamine on psychomotor and cognitive 
    functions and dopamine signaling in the brain. Behav Brain 
    Res. 2017;320:282-90. doi: 10.1016/j.bbr.2016.12.010.
    39. González B, Jayanthi S, Gomez N, Torres OV, Sosa MH, 
    Bernardi A, et al. Repeated methamphetamine and modafinil 
    induce differential cognitive effects and specific histone 
    acetylation and DNA methylation profiles in the mouse 
    medial prefrontal cortex. Prog Neuropsychopharmacol Biol 
    Psychiatry. 2018;82:1-11. doi: 10.1016/j.pnpbp.2017.12.009.
    40. Zhou M, Gong X, Ru Q, Xiong Q, Chen L, Si Y, et al. The 
    neuroprotective effect of L-stepholidine on methamphetamineinduced memory deficits in mice. Neurotox Res. 
    2019;36(2):376-86. doi: 10.1007/s12640-019-00069-z.
    41. Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, 
    Takahashi K, et al. Repeated methamphetamine treatment 
    impairs recognition memory through a failure of noveltyinduced ERK1/2 activation in the prefrontal cortex of 
    mice. Biol Psychiatry. 2006;59(1):75-84. doi: 10.1016/j.
    biopsych.2005.06.006.
    42. Ito Y, Takuma K, Mizoguchi H, Nagai T, Yamada K. A novel 
    azaindolizinone derivative ZSET1446 (spiro[imidazo[1,2-a]
    pyridine-3,2-indan]-2(3H)-one) improves methamphetamineinduced impairment of recognition memory in mice by 
    activating extracellular signal-regulated kinase 1/2. J 
    Pharmacol Exp Ther. 2007;320(2):819-27. doi: 10.1124/
    jpet.106.114108.
    43. Mizoguchi H, Takuma K, Fukakusa A, Ito Y, Nakatani A, Ibi 
    D, et al. Improvement by minocycline of methamphetamineinduced impairment of recognition memory in mice. 
    Psychopharmacology (Berl). 2008;196(2):233-41. doi: 
    10.1007/s00213-007-0955-0.
    44. González B, Raineri M, Cadet JL, García-Rill E, Urbano FJ, 
    Bisagno V. Modafinil improves methamphetamine-induced 
    object recognition deficits and restores prefrontal cortex ERK 
    signaling in mice. Neuropharmacology. 2014;87:188-97. doi: 
    10.1016/j.neuropharm.2014.02.002.
    45. Noda Y, Mouri A, Ando Y, Waki Y, Yamada SN, Yoshimi A, et 
    al. Galantamine ameliorates the impairment of recognition 
    memory in mice repeatedly treated with methamphetamine: 
    involvement of allosteric potentiation of nicotinic 
    acetylcholine receptors and dopaminergic-ERK1/2 systems. 
    Int J Neuropsychopharmacol. 2010;13(10):1343-54. doi: 
    10.1017/s1461145710000222.
    46. Vieira-Brock PL, McFadden LM, Nielsen SM, Smith MD, 
    Hanson GR, Fleckenstein AE. Nicotine administration 
    attenuates methamphetamine-induced novel object 
    recognition deficits. Int J Neuropsychopharmacol. 
    2015;18(12):pyv073. doi: 10.1093/ijnp/pyv073.
    47. Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, et 
    al. Exposure to far-infrared rays attenuates methamphetamineinduced recognition memory impairment via modulation of 
    the muscarinic M1 receptor, Nrf2, and PKC. Neurochem Int. 
    2018;116:63-76. doi: 10.1016/j.neuint.2018.03.009.
    48. Tran TV, Shin EJ, Nguyen LTT, Lee Y, Kim DJ, Jeong JH, 
    et al. Protein kinase Cδ gene depletion protects against 
    methamphetamine-induced impairments in recognition 
    memory and ERK1/2 signaling via upregulation of glutathione 
    peroxidase-1 gene. Mol Neurobiol. 2018;55(5):4136-59. doi: 
    10.1007/s12035-017-0638-8.
    49. Gonçalves J, Baptista S, Olesen MV, Fontes-Ribeiro C, Malva 
    JO, Woldbye DP, et al. Methamphetamine-induced changes 
    in the mice hippocampal neuropeptide Y system: implications 
    for memory impairment. J Neurochem. 2012;123(6):1041-53. 
    doi: 10.1111/jnc.12052.
    50. Reichel CM, Schwendt M, McGinty JF, Olive MF, See RE. 
    Loss of object recognition memory produced by extended 
    access to methamphetamine self-administration is reversed 
    by positive allosteric modulation of metabotropic glutamate 
    receptor 5. Neuropsychopharmacology. 2011;36(4):782-92. 
    doi: 10.1038/npp.2010.212.
    51. Long JD, Liu Y, Jiao DL, Wang YJ, Zan GY, Ju YY, et al. The 
    neuroprotective effect of memantine on methamphetamineinduced cognitive deficits. Behav Brain Res. 2017;323:133-
    40. doi: 10.1016/j.bbr.2017.01.042.
    52. Khodamoradi M, Tirgar F, Ghazvini H, Rafaiee R, 
    Seyedhosseini Tamijani SM, Karimi N, et al. Role of the 
    cannabinoid CB1 receptor in methamphetamine-induced 
    social and recognition memory impairment. Neurosci Lett. 
    2022;779:136634. doi: 10.1016/j.neulet.2022.136634.
    53. Luo H, Li X, Fan R, Ruan Y, Qian L, Shen Y, et al. 
    Neuroprotective effect of histamine H3 receptor blockade 
    on methamphetamine-induced cognitive impairment in 
    mice. Pharmacol Biochem Behav. 2023;222:173512. doi: 
    10.1016/j.pbb.2022.173512.
    54. Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, 
    et al. Chronic methamphetamine effects on brain structure 
    and function in rats. PLoS One. 2016;11(6):e0155457. doi: 
    10.1371/journal.pone.0155457.
    55. Westbrook SR, Dwyer MR, Cortes LR, Gulley JM. Extended 
    access self-administration of methamphetamine is associated 
    with age- and sex-dependent differences in drug taking 
    behavior and recognition memory in rats. Behav Brain Res. 
    2020;390:112659. doi: 10.1016/j.bbr.2020.112659.56. Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, et al. The 
    main molecular mechanisms underlying methamphetamineinduced neurotoxicity and implications for pharmacological 
    treatment. Front Mol Neurosci. 2018;11:186. doi: 10.3389/
    fnmol.2018.00186.
    57. Reichel CM, Ramsey LA, Schwendt M, McGinty JF, See RE. 
    Methamphetamine-induced changes in the object recognition 
    memory circuit. Neuropharmacology. 2012;62(2):1119-26. 
    doi: 10.1016/j.neuropharm.2011.11.003.
    58. Clark RE, Kuczenski R, Segal DS. Escalating dose, multiple 
    binge methamphetamine regimen does not impair recognition 
    memory in rats. Synapse. 2007;61(7):515-22. doi: 10.1002/
    syn.20397.
    59. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa 
    S. Translational control by MAPK signaling in long-term 
    synaptic plasticity and memory. Cell. 2004;116(3):467-79. 
    doi: 10.1016/s0092-8674(04)00115-1.
    60. Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, Ibi D, et al. 
    Dopamine D1 receptors regulate protein synthesis-dependent 
    long-term recognition memory via extracellular signalregulated kinase 1/2 in the prefrontal cortex. Learn Mem. 
    2007;14(3):117-25. doi: 10.1101/lm.461407.
    61. Mizoguchi H, Yamada K, Mizuno M, Mizuno T, Nitta A, 
    Noda Y, et al. Regulations of methamphetamine reward by 
    extracellular signal-regulated kinase 1/2/ets-like gene-1 
    signaling pathway via the activation of dopamine receptors. 
    Mol Pharmacol. 2004;65(5):1293-301. doi: 10.1124/
    mol.65.5.1293.
    62. Siegel JA, Craytor MJ, Raber J. Long-term effects of 
    methamphetamine exposure on cognitive function 
    and muscarinic acetylcholine receptor levels in mice. 
    Behav Pharmacol. 2010;21(7):602-14. doi: 10.1097/
    FBP.0b013e32833e7e44.
    63. Alexander MP, Stuss DT, Picton T, Shallice T, Gillingham 
    S. Regional frontal injuries cause distinct impairments in 
    cognitive control. Neurology. 2007;68(18):1515-23. doi: 
    10.1212/01.wnl.0000261482.99569.fb.
    64. Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, 
    Levey AI. M1 muscarinic acetylcholine receptors activate 
    extracellular signal-regulated kinase in CA1 pyramidal 
    neurons in mouse hippocampal slices. Mol Cell Neurosci. 
    2001;18(5):512-24. doi: 10.1006/mcne.2001.1042.
    65. Beardsley PM, Hauser KF. Glial modulators as potential 
    treatments of psychostimulant abuse. Adv Pharmacol. 
    2014;69:1-69. doi: 10.1016/b978-0-12-420118-7.00001-9.
    66. Borgmann K, Ghorpade A. HIV-1, methamphetamine and 
    astrocytes at neuroinflammatory crossroads. Front Microbiol. 
    2015;6:1143. doi: 10.3389/fmicb.2015.01143.
    67. Gordon R, Singh N, Lawana V, Ghosh A, Harischandra DS, 
    Jin H, et al. Protein kinase Cδ upregulation in microglia 
    drives neuroinflammatory responses and dopaminergic 
    neurodegeneration in experimental models of Parkinson’s 
    disease. Neurobiol Dis. 2016;93:96-114. doi: 10.1016/j.
    nbd.2016.04.008.
    68. Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. 
    Protein kinase C activation as a potential therapeutic strategy 
    in Alzheimer’s disease: is there a role for embryonic lethal 
    abnormal vision-like proteins? Basic Clin Pharmacol Toxicol. 
    2016;119(2):149-60. doi: 10.1111/bcpt.12581.
    69. Shin EJ, Duong CX, Nguyen XT, Bing G, Bach JH, Park 
    DH, et al. PKCδ inhibition enhances tyrosine hydroxylase 
    phosphorylation in mice after methamphetamine treatment. 
    Neurochem Int. 2011;59(1):39-50. doi: 10.1016/j.
    neuint.2011.03.022.
    70. Cammalleri M, Lütjens R, Berton F, King AR, Simpson C, 
    Francesconi W, et al. Time-restricted role for dendritic 
    activation of the mTOR-p70S6K pathway in the induction 
    of late-phase long-term potentiation in the CA1. Proc Natl 
    Acad Sci U S A. 2003;100(24):14368-73. doi: 10.1073/
    pnas.2336098100.
    71. Lee KW, Kim HC, Lee SY, Jang CG. Methamphetaminesensitized mice are accompanied by memory impairment and 
    reduction of N-methyl-d-aspartate receptor ligand binding 
    in the prefrontal cortex and hippocampus. Neuroscience. 
    2011;178:101-7. doi: 10.1016/j.neuroscience.2011.01.025.
    72. Wang J, O’Donnell P. D1 dopamine receptors potentiate 
    NMDA-mediated excitability increase in layer V prefrontal 
    cortical pyramidal neurons. Cereb Cortex. 2001;11(5):452-
    62. doi: 10.1093/cercor/11.5.452.
    73. Akirav I, Maroun M. Ventromedial prefrontal cortex is 
    obligatory for consolidation and reconsolidation of object 
    recognition memory. Cereb Cortex. 2006;16(12):1759-65. 
    doi: 10.1093/cercor/bhj114.
    74. Ishikawa A, Kadota T, Kadota K, Matsumura H, Nakamura S. 
    Essential role of D1 but not D2 receptors in methamphetamineinduced impairment of long-term potentiation in hippocampalprefrontal cortex pathway. Eur J Neurosci. 2005;22(7):1713-9. 
    doi: 10.1111/j.1460-9568.2005.04332.x.