A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine

Seyyedeh Masoumeh Seyedhosseini Tamijani1, Elmira Beirami2, Hamed Ghazvini1, Raheleh Rafaiee1, Masoud Nazeri1, Moazamehosadat Razavinasab1,4,*

1Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
2Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
3Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
4Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran

Abstract
Background: Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be responsible for MA-induced NOR alterations.

Methods: A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the past 10 years.

Findings: The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of monoaminergic systems.

Conclusion: NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new therapeutic agents in MA-addicted individuals.

Keywords: Methamphetamine, Novel object recognition test, Monoaminergic systems, Cognitive impairment, Rodents

Introduction
Methamphetamine (MA), an illicit psychostimulant, is the second most highly abused drug worldwide after cannabis. It has been reported that MA abusers show structural brain abnormalities in the prefrontal cortex (PFC) and hippocampus1 and exhibit impairments in cognitive functions such as episodic memory as well as executive functions2 that can be partially recovered following MA abstinence.3 The mechanisms underlying cognitive impairments are not fully understood currently; nevertheless, a considerable number of studies have indicated that oxidative stress, neuroinflammation, excitotoxicity, reactive oxygen and nitrogen species microglial activation, as well as various apoptotic pathways play an essential role in the MA-induced neurotoxic effects leading to cognitive impairments.4-6 Meta-analysis studies have also demonstrated that impairments in episodic memory are one of the most common cognitive impairments in relapsing and abstinent long-term MA users.7 Episodic memory is a form of declarative memory that refers to the use of a previously experienced autobiographical event for conscious recall in humans.7 The visual paired comparison task is used to test declarative memory in human subjects8 while a modified version of the task is recruited for rodents.9 One such task is the novel object recognition (NOR) task that reflects components of episodic memory and assesses non-spatial object memory in rodents based on their natural tendency toward the exploration of novel objects and environments.10 Several original studies have evaluated molecular mechanisms underlying recognition memory impairments induced by MA and reported different neurobiological mechanisms that are involved in NOR deficit in rodents. The present study aims to review these mechanisms as well as the effect of different regimens of MA administration on the NOR memory.

*Corresponding Author: Moazamehosadat Razavinasab, Email: razavimoaz@yahoo.com

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

https://ahj.kmu.ac.ir

Review Article

Addiction & Health

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

Addiction & Health

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

Addiction & Health

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

Addiction & Health

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

Addiction & Health

Received: September 21, 2021, Accepted: November 7, 2021, ePublished: October 29, 2023

Addiction & Health
Methods

Search strategy and selection criteria
A literature search was conducted in the PubMed electronic database from January 2000 to December 2020 for relevant studies using the following search strategy: (object recognition OR novel object recognition OR object memory) AND (mice OR rat OR mouse) AND (methamphetamine).

Inclusion and exclusion criteria
The search was limited to articles in the English language. To determine the inclusion of the articles, the search was performed independently by two researchers and then, all peer-reviewed relevant articles were identified. A flowchart of the process for selecting studies is depicted in Figure 1.

Results

The NOR task
Ennaceur and Delacour developed the NOR task based on the innate tendency of animals to explore novel objects over familiar ones. This test is widely used for the investigation of genetic, pharmacological, and neurological changes related to cognition disorders. Besides, it can be used to measure working and episodic memory, attention, anxiety, and preference for novelty in rodents. NOR test has several advantages compared to other rodent memory tests, which have made it attractive to researchers studying cognitive disturbances. Basically, in the NOR test, there are no positive or negative reinforcers, hence it does not create stressful conditions. Moreover, this test can be performed in shorter time frames compared to other memory tests such as the Morris water maze. It is also cost-effective as it does not require expensive tools.

Despite the numerous advantages of the NOR test, it has some limitations. Sometimes, animals spend less time on novelty exploration which makes it difficult to analyze the results. Therefore, to obtain significant differences, group sizes must be increased. Moreover, potential differences in the rate of learning cannot be measured in this test as there is only one training session. In addition, the search activity can increase in a large open field and animals might also show anxiety-like behavior in the form of increased movement and exploration of different parts of the testing apparatus, making the analysis more difficult. Hence, it is necessary to accommodate the animals to the testing chamber prior to the implementation of the test and also consider the confounding effects of the anxiety caused by the exposure to a novel object.

The NOR task procedures
There is considerable variation among the studies in terms of NOR procedure. However, the most commonly used procedure consists of three sessions: habituation, familiarization or training, and test (Figure 2). In the habituation session, each animal is allowed to freely explore an open field without objects. Then, the animal is taken from the arena and put in its cage. During the familiarization session, animals are placed in the arena containing two similar objects (A + A), which is considered the acquisition trial. After a retention interval, in the test session, animals are exposed to two objects in the open-field arena; one is a familiar object from the familiarization session and the other is novel (A + B). The recognition index is measured as a ratio of the time spent exploring the novel object over the total time spent exploring both objects in the test session.

Records identified through database (PubMed) searching n=83

Records screened n=77

Records excluded n=50
Reasons:
• Not pertinent: n=48
• Duplicate: n=2

Full-text articles for eligibility n=27

Studies included for narrative review n=27

Figure 1. Flow chart of the study selection process

Habitation
Familiarization or Training
Retention

Figure 2. Schematic representation of the novel object recognition task
for the evaluation of short- and long-term memory in the test session, respectively.16,17 In the NOR paradigm, exploratory behavior is considered as touching or sniffing the objects with the nose but not standing or sitting on the objects. Objects can be made of plastic, metal, or glass (similar in height and volume but different in shape and color) and chosen after determining in preliminary experiments with other animals that they were equally preferred by the test subjects.

Brain regions involved in NOR task

It has been reported that the hippocampus and perirhinal (PRh) cortex are the main brain regions involved in NOR memory. PRh cortex has a critical role in the object recognition memory and is essential for presenting basic information about the familiarity or novelty of an object and also coding information about the objects in a short retention interval. Nonetheless, it is not responsible for maintaining information about the object during longer retention intervals.18 On the other hand, the hippocampus, by coding object memory, maintains strong novel object preference after long but not short durations.19 Other studies have also reported the role of PFC in the object recognition memory.20,21 Moreover, there is evidence suggesting that the nucleus accumbens (NAc) is involved in the behavioral response to novelty and other tasks that rely on object familiarity discrimination.22

Discussion

Molecular mechanisms underlying MA-induced NOR memory deficit

In this study, the articles that investigated the effect of different MA regimens on the recognition memory in the NOR test were reviewed. Earlier research has demonstrated that the binge-exposure paradigm is a common model to study MA neurotoxicity in rodents and also escalating dose paradigm appears to mimic the human pattern of escalating drug intake.23,24 As illustrated in Table 1, most of the studies using single-day high-dose as well as repeated or chronic exposure models reported novel object memory deficits following MA administration. These patterns have also been observed in MA self-administration paradigms. Self-administration paradigms are valid and reliable animal models for rodents that mimic drug abuse conditions in humans.25 In this way, the administration starts with a low dose of the drug and gradually increases over time.26

In most of these drug administration models, object recognition memory impairments persist for a long time after MA discontinuation. This suggests that cognitive impairments are the result of MA-induced molecular disruptions involved in cognitive functions beyond the effects of early drug withdrawal28 or MA-deprivation-induced neural changes. MA-induced behavioral consequences depend vastly on the pattern of MA administration. However, in the case of recognition memory, the consequences appear to be sensitive to MA intake, regardless of the types of MA dosing regimen and administration routes. This can be related to brain structures involved in recognition memory that are affected by this psychostimulant drug.

In association with the molecular mechanisms involved in MA-induced NOR memory deficits, several studies have shown that MA-induced biochemical and structural changes occur in the monoaminergic systems such as dopaminergic terminals.34,35 In these cases, MA enters dopaminergic terminals via the dopamine transporter (DAT) and passive diffusion, causing dopamine (DA) efflux from the storage vesicles into the cytoplasm. DA then intracellularly autoxidizes and produces several reactive oxygen and nitrogen species as well as DA quinones. These lead to oxidative stress followed by mitochondrial dysfunction and dopaminergic terminal damage (Figure 3). It has been reported that MA damages the dopaminergic system primarily in the striatum; however, this system is less affected in the hippocampus and PRh.34,36 Moreover, a recent study has demonstrated that MA exposure through the excessive release of DA in the PFC leads to the activation of the neuronal apoptosis pathway and finally induces damage to recognition memory function, including NOR memory.11 Other studies have also indicated that MA disrupts the serotonergic system in the hippocampus, PFC, and PRh which are important regions for object recognition memory.34,35 Reichel et al have shown that MA impairs recognition memory by reducing serotonin and norepinephrine transporters (SERT and NET, respectively) in the hippocampus and PRh cortex.37 Therefore, impairments in the monoaminergic systems can be considered one of the main molecular mechanisms of MA-induced recognition memory deficits in most cases (Table 1). Nevertheless, a few studies have demonstrated no change in the NOR test after MA administration, although dopaminergic markers were affected. According to these studies, this non-alteration could be attributed to various mechanisms including neuroadaptation after the administration of escalating MA regimen,28 use of C57BL/6 mice for modeling cognitive deficits,19 compensatory mechanisms, tolerance to the neurotoxic effect of MA, and finally a non-critical injury to monoamine terminals.37

Dysfunction of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in the PFC is another molecular mechanism involved in MA-induced NOR memory deficits.38 ERK1/2, a member of the mitogen-activated protein kinase (MAPK) family, is necessary for the consolidation of different forms of long-term memory.39 Furthermore, it has been reported that the ERK1/2 signaling pathway linked to dopamine D1 receptors is involved in protein synthesis-dependent long-term retention of recognition memory in the PFC.30 Tran et al
Table 1. NOR performance in MA-treated animals and involvement of molecular mechanisms underlying MA neurotoxic effects

<table>
<thead>
<tr>
<th>MA regimen</th>
<th>Molecular mechanisms involved in recognition memory dysfunction</th>
<th>NOR test after the last inj. of MA</th>
<th>Retention</th>
<th>NOR performance</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 10 mg/kg; i.p., at 2 h intervals</td>
<td>Depletion of DA and 5-HT (striatum), ↓DA and 5-HT (PFC, hippocampus, VTA, and substantia nigra)</td>
<td>4 days</td>
<td>1, 2, and 4 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>27</td>
</tr>
<tr>
<td>4 × 4 mg/kg; s.c., at 2 h intervals</td>
<td>↓DAT (striatum), ↓SERT (hippocampus)</td>
<td>1 week and 3 weeks</td>
<td>90 min and 24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>28</td>
</tr>
<tr>
<td>4 × 4 mg/kg; s.c., at 2 h intervals</td>
<td>↓DAT (ventral caudate putamen), ↓SERT (hippocampus, PrH cortex, and neocortex), cell degeneration in the primary somatosensory cortex</td>
<td>1 week</td>
<td>90 min after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>29</td>
</tr>
<tr>
<td>3 mg/kg; i.p., once every other day for 20 days</td>
<td>↓TH (caudate putamen of striatum), dopaminergic terminal deficit, ↑hyperthermia</td>
<td>24 h</td>
<td>1 and 24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>30</td>
</tr>
<tr>
<td>4 × 5 mg/kg; s.c., at 2 h intervals</td>
<td>↓DAT (striatum), ↓SERT (hippocampus and PrH cortex), neuronal degeneration (primary somatosensory cortex), ↓Fos expression (ventrolateral striatum, NAc, cingulate cortex, and the deeper layers of motor cortex)</td>
<td>1 week and 3 weeks</td>
<td>90 min and 24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>31</td>
</tr>
<tr>
<td>4 × 10 mg/kg; s.c., every 2 h or 24 x 1 67 mg/kg; s.c., once every 15 min</td>
<td>↓DA and DOPAC, (striatum), ↓5-HT and 5-HIAA (hippocampus), ↑GFAP (striatum and hippocampus), ↓plasma corticosterone level</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats, regardless of dosing regimen</td>
<td>32</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 days</td>
<td>↓DA content (PFC), ↓5-HT content (hippocampus), ↑TH/DA ratio and ↑DOPAC + HVA/DA ratio (PFC), ↓5-HIAA/5-HT ratio (hippocampus), ↓↓DOPAC/DA or 5-HIAA/5-HT ratio (PFC), ↓↓5-HIAA/DA + DOPAC + HVA/DA ratio (hippocampus)</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>33</td>
</tr>
<tr>
<td>4 × 10 mg/kg; s.c., at 2 h intervals</td>
<td>↓DA and DOPAC (striatum), ↑GFAP (striatum), ↑basal plasma corticosterone, hyperthermia</td>
<td>1 week</td>
<td>1 h after the training session</td>
<td>↔NOR performance in the MA-treated mice</td>
<td>34</td>
</tr>
<tr>
<td>4 × 5 mg/kg; i.p., every 2 h from postnatal day 91 to 100</td>
<td>↓DA (striatum and hippocampus), ↓DOPAC (striatum and PFC), ↓TH (hippocampus), ↓5-HT and 5-HIAA (hippocampus)</td>
<td>24 h</td>
<td>15 min and 24 h after the training session</td>
<td>↔NOR after 15 min, ↓NOR after 24 h in the MA-treated rats</td>
<td>35</td>
</tr>
<tr>
<td>24 mg/kg; i.p., once a day for 14 consecutive days</td>
<td>↓Synaptic plasticity (hippocampus), ↓TH (cortex, hippocampus, and striatum), ↓low MW of DAT and ↑high MW of DAT at 24 h (PFC), ↔low MW of DAT and ↑high MW of DAT (cortex), ↓low MW of DAT ↔High MW of DAT, (hippocampus)</td>
<td>Day 0 (no drug treatment) and 7 and 14 days</td>
<td>1 h after the training session</td>
<td>↔NOR performance in the MA-treated mice</td>
<td>36</td>
</tr>
<tr>
<td>Low dose of MA (4 mg/kg) or high dose of MA (8 mg/kg); i.p., once a day for 16 weeks</td>
<td>↓DAT, dopamine D1 and D2 receptor levels and distribution (striatum, NAc, and OT) in low and high doses of MA</td>
<td>24 h</td>
<td>1 h after the training session</td>
<td>↓NOR performance in the high dose of MA-treated rats</td>
<td>37</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 consecutive days</td>
<td>↓Total level of H3ac and H4ac, ↑5-mC, ↑H3ac enrichment at promoters of dopamine D2 receptor, Hcrtr1/2, Hhr1, and Grn1, ↑H4ac enrichment at promoters of dopamine D1 receptor, Hhr1 and Grn1, ↑p-PKA</td>
<td>24 h</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>38</td>
</tr>
<tr>
<td>10 mg/kg; i.p., once a day for 7 consecutive days</td>
<td>↓Protein expression of dopaminergic D2 receptors, ↑protein expression of DAT, ↑protein expression of p-PKA, ↑protein expression of HCN1 channel (hippocampus)</td>
<td>24 h</td>
<td>4 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>39</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 days</td>
<td>↓p-ERK1/2 and dysfunction of dopamine D1 receptor-ERK1/2 pathway (PFC)</td>
<td>1, 7, 14, or 28 days</td>
<td>1 h or 24 h after the training session</td>
<td>↔NOR after 1 h, ↓NOR performance after 1, 7, 14, or 28 days in the MA-treated mice</td>
<td>40</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 days</td>
<td>↓p-ERK (PFC)</td>
<td>1 day and 3 weeks</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>41</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 days</td>
<td>disruption of ERK1/2 signaling (PFC)</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>42</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 days</td>
<td>↓p-ERK (mPFC)</td>
<td>24 h</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>43</td>
</tr>
<tr>
<td>1 mg/kg; s.c., once a day for 7 consecutive days</td>
<td>↓Extracellular ACh levels, ↑extracellular DA levels, ↓p-ERK1/2, ↑nAChR6 (PFC)</td>
<td>1 day and 3 weeks</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>44</td>
</tr>
<tr>
<td>4 × 7.5 mg/kg; s.c., at 2 h intervals</td>
<td>↓SERT density (hippocampal CA1 and CA3 regions and PrH), ↓[d2] nAChR density (hippocampal CA1 region)</td>
<td>4 days</td>
<td>90 min after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>45</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>MA regimen</th>
<th>Molecular mechanisms involved in recognition memory dysfunction</th>
<th>NOR test after the last inj. of MA</th>
<th>Retention interval</th>
<th>NOR performance</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/kg, i.p., once a day for 7 consecutive days</td>
<td>↑PKCα and p-PKCα expression, ↓GPx1 expression, ↓M1, ↓M4 mAChRs and ↓β2 nAChR expression, ↓p-ERK1/2, ↓Nitr2 (PFC)</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>47</td>
</tr>
<tr>
<td>1 mg/kg, s.c., once a day for 7 days</td>
<td>↑p-PKCal, ↑mGluR5 expression, ↓p-ERK1/2, ↓GPx1 (PFC)</td>
<td>1, 7, 14, or 28 days</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>48</td>
</tr>
<tr>
<td>30 mg/kg, i.p., single dose</td>
<td>↑NP1, Y2, and Y5 receptor mRNA levels, changes in NPY receptor binding, disruption of the AKT/mTOR signaling pathway (hippocampus)</td>
<td>5 min after or before MA inj.</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>49</td>
</tr>
<tr>
<td>0.02 mg/infusion; i.v., 7 daily 1 h sessions followed by 6 h daily sessions for 14 days</td>
<td>↓mGluR5 (PRh cortex)</td>
<td>1 week</td>
<td>90 min and 24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>50</td>
</tr>
<tr>
<td>4 × 5 mg/kg, i.p., every 2 h</td>
<td>↓Expression level of Bcl-2 and ↓expression level of cleaved caspase-3 (PFC)</td>
<td>2 days</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>51</td>
</tr>
<tr>
<td>Four injections of 6 mg/kg, s.c., at 2 h intervals</td>
<td>Cannabinoid type 1 receptor antagonist</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated rats</td>
<td>52</td>
</tr>
<tr>
<td>Daily injection of 5 mg/kg METH for 5 consecutive days</td>
<td>↑Histamine H3 receptor protein expression, ↑hippocampal apoptosis</td>
<td>1 week</td>
<td>24 h after the training session</td>
<td>↓NOR performance in the MA-treated mice</td>
<td>53</td>
</tr>
</tbody>
</table>

Abbreviations: MA: methamphetamine; NOR: novel object recognition; inj.: injection; i.p.: intraperitoneal; DA: dopamine; 5-HT: 5-hydroxytryptamine (serotonin); PFC: prefrontal cortex; VTA: ventral tegmental area; s.c.: subcutaneous; DAT: dopamine transporter; SERT: serotonin transporter; PRh: perirhinal; TH: tyrosine hydroxylase; NA: nucleus accumbens; DOPAC: 3,4-dihydroxyphenylacetic acid; 5-HIAA: 5-hydroxyindoleacetic acid; GFAP: glial fibrillary acidic protein; HVA: homovanillic acid; MW: molecular weight; OF: olfactory tubercle; H3ac and H4ac: histone 3 and 4 acetylation; 5-MC: 5-methylcytoeine, Hchr1/2: orexin receptor 1 and 2; Hrh1: histamine receptor1; Grin1: glutamate ionotropic receptor NMDA type subunit1; mPFC: medial prefrontal cortex, p-pKA: phospho-protein kinase A; HCN1: hyperpolarization-activated cyclic-nucleotide-gated non-selective cation; p-ERK1/2: phospho-extracellular signal-regulated protein kinases 1 and 2; ACh: acetylcholine, mACHRs: muscarinic acetylcholine receptors, Ntr2: nuclear factor erythroid-2-related factor 2; NPY: neuropeptide Y, AKT/mTOR: regulated protein kinases 1 and 2; ACh: acetylcholine, nAChRs: nicotinic acetylcholine receptors, CA1: cornu ammonis1; p-PKC: protein kinase C delta, GPx1: glutathione peroxidase1, mACHRs: muscarinic acetylcholine receptors, Nitr2: nuclear factor erythroid-2-related factor 2; NPY: neuropeptide Y, AKT/mTOR: protein kinase B/mammalian target of rapamycin, i.v.: intravenous, mGluR5: metabotropic glutamate receptor5, Bcl-2: B-cell lymphoma-2, ↔: without change, ↑: increase, ↓: decrease

![Pre-Synaptic neuron](image1.png)

Figure 3. Schematic drawing of cellular and molecular events involved in MA-induced DA terminal damage. This figure summarizes the findings of many studies that have addressed the role of DA, oxidative stress, and other mechanisms in MA neurotoxicity. MA enters dopaminergic terminals via DAT and passive diffusion, causing the efflux of DA from intraneuronal vesicles into the cytoplasm. Then, DA auto-oxidizes to produce toxic DA quinones and several reactive oxygen and nitrogen species. These events lead to oxidative stress, mitochondrial dysfunctions, and dopaminergic terminal damage.

- Demonstrated that pharmacological inhibition of ERK1/2 using a selective antagonist impairs long-term memory in rodents. There is also accumulating evidence implicating the role of the ERK pathway in behavioral responses to addictive drugs such as MA. Kamei et al indicated that repeated MA exposure impairs NOR memory through the impairment of the ERK1/2 pathway in the PFC brain region in mice. Thus, PFC activation of ERK1/2 immediately after exposure to novel objects appears to be necessary for the long-term retention of NOR memory.

- Other studies have revealed that muscarinic and nicotinic acetylcholine receptors (mACHR and nAChR, respectively) are also affected by MA. It is known that the Ach system is involved in the cognitive functions, and Ach receptors are expressed at high levels in the hippocampus and PFC. It has been revealed that MA exposure during the brain development induces mACHR alterations and causes long-term cognitive impairments in rodents. Furthermore, nicotine administration in MA-treated rats attenuates NOR memory deficit by increasing α4β2 nAChRs in the PRh cortex and hippocampus. Berkeley et al reported that M1 mACHR significantly activates ERK1/2 in the CA1 pyramidal neurons of the hippocampus. As previously mentioned, ERK1/2 is involved in the cognitive functions and is
affected by MA toxicity. Therefore, MA administration might hypothetically impair NOR memory through the malfunction of Ach receptor-ERK1/2 signaling.

Some studies have also observed that exposure to psychostimulants, including MA, causes neuroinflammatory responses which may produce memory impairments.\(^{65,66}\) Protein kinase C\(\delta\) (PKC\(\delta\)), a member of the novel PKC isoform family, is a major proinflammatory kinase that is involved in a variety of biological events such as DA regulation, neuroinflammation, oxidative stress, and apoptosis\(^{67}\) and also is associated with memory dysfunction.\(^{68}\) Shin et al also demonstrated that MA exposure significantly increases PKC\(\delta\) expression in mice striatum and causes NOR memory deficits.\(^{69}\) Accordingly, MA can induce recognition memory impairment via the activation of the PKC\(\delta\) pathway in rodents.

It has been reported that disruption in the neuropeptide Y (NPY) system is another mechanism involved in NOR memory impairment induced by MA.\(^{49}\) NPY, one of the most abundant peptides in the central nervous system, is involved in several important functions such as learning and memory. Gonçalves et al. showed MA-induced recognition memory impairment in the NOR test is accompanied by significant alterations in the striatal and hippocampus NPY and NPY receptors (especially Y2 receptor) mRNA levels in rodents.\(^{49}\) Indeed, these findings confirm that NPY system alterations are involved in memory deficits induced by MA administration in the NOR test.

It has been shown that MA induces recognition memory impairment by the dysfunction of the AKT/mTOR pathway in the hippocampus of rodents.\(^{49}\) The AKT/mTOR pathway is an important signaling cascade involved in protein synthesis-dependent synaptic plasticity required for hippocampus-dependent learning and memory processes.\(^{70}\) A few studies have also indicated that MA administration induces NOR memory deficit via the damage of somatosensory cortical neurons that could linger for a long time after MA\(^{29,31}\) Furthermore, other studies have reported that MA administration reduces the expression of several ionotropic and metabotropic glutamate receptor subunits in the hippocampus, PRh, and PFC of rodents which seems to be correlated with the recognition memory impairments.\(^{50,71}\) Besides, several lines of evidence have shown the interaction between NMDA (N-methyl-D-aspartate) and dopamine D1 receptors required for the consolidation of recognition memory in the PFC.\(^{72,73}\) Ishikawa et al. revealed that repeated MA administration impairs recognition memory through the modulating NMDA receptors in the hippocampus and PFC of rodents.\(^{74}\) Decreased Bcl-2 expression level and increased cleaved caspase-3 expression level in PFC as well as increased hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, as the key regulators of memory function in the hippocampus are other mechanisms involved in NOR impairment induced by MA.\(^{49}\)

As reported in Table 1, it seems that NOR memory is affected by MA administration through diverse pathophysiological mechanisms,\(^{28,32,53}\) and looking at the mechanisms of this alteration needs consideration of different molecular pathways, though the use of the NOR paradigm is extremely helpful in elucidating the neurobiological consequences of MA administration and also the cognitive dysfunctions associated with long term use of psychostimulants including MA. It consider that the main mechanism of recognition memory deficit is the alteration in the monoaminergic system.\(^{28,30}\)

The limitation of this study was that exclusively the PubMed database was employed to scrutinize related articles. It is evident that the inclusion of other databases such as Scopus, Web of Science (ISI), and EMBASE would have yielded more extensive data.

Conclusion

This review indicated that several mechanisms are involved in NOR memory impairment after MA administration, and monoaminergic system disruption in the hippocampus, striatum, PRh, and PFC could be the pivotal mechanisms impairing NOR memory following MA exposure. Thus, targeting these specific pathways can provide promising therapeutic approaches against MA-induced recognition memory deficits. Moreover, the NOR test is a simple method to assess cognitive functions such as learning and memory and also novelty exploration in psychostimulant dependence animal models as well as other cognitive deficit models in rodents.

Acknowledgments

The authors are grateful to Prof. Mohammad Shabani for providing practical comments on the manuscript.

Authors’ Contribution

Conceptualization: Seyedeh Masoumeh Seyedhosseini Tamijani.

Data curation: Elmira Beirami.

Formal analysis: Moazamehosadat Razavinasab.

Investigation: Hamed Ghazvini, Raheleh Rafaeie, Masoud Nazeri.

Methodology: Elmira Beirami, Raheleh Rafaeie.

Project administration: Seyedeh Masoumeh Seyedhosseini Tamijani.

Supervision: Moazamehosadat Razavinasab.

Validation: Hamed Ghazvini.

Visualization: Seyedeh Masoumeh Seyedhosseini Tamijani, Elmira Beirami, Raheleh Rafaeie, Masoud Nazeri, Moazamehosadat Razavinasab.

Writing–review & editing: Seyedeh Masoumeh Seyedhosseini Tamijani, Moazamehosadat Razavinasab.

Competing Interests

The authors declare no competing interests.

Funding

This research did not receive any specific grant from funding.
agencies in the public, commercial, or not-for-profit sectors.

References

δ

10.1038/sj.npp.13006771.

