Pharmacokinetics of Dual Amino Acids for Dry Powder Inhalation Therapy in Pulmonary Drug Delivery: An In-Vivo Study

Document Type : Original Article

Authors

1 Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, Tamilnadu-641 032, India

2 Department of Chemistry, Karpagam Academy of Higher Education and Karpagam Rare Disease Research Centre, Coimbatore, Tamilnadu-641 021, India

10.34172/ahj.1538

Abstract

Background: Smoking cigarettes leads to serious health problems, and addiction is a major concern. De-addiction therapy includes e-cigarettes and counseling, and the success rate is poor in these approaches, warranting alternate therapeutic interventions. The present study evaluates dry powder inhalation using amino acids as a new method.
Methods: A novel formulation was prepared using nanospray drying and ball milling techniques. SEM analysis was conducted to ascertain particle size, and pharmacokinetic assessment was done to evaluate how rapidly the drug is released from the formulation. The optimized ratio of ingredients revealed the best formula, L-tyrosine, L-tryptophan, and lactose in the ratio of 5 mg:1 mg: 4 mg, which led to the dry powder preparation. SEM analysis revealed that the dry powder comprising L-tryptophan and L-tyrosine had undergone micronization to 2–4 μm.
Findings: An innovative treatment, such as an inhalation powder therapy comprising amino acids, can help reduce mood changes. Depletion of tryptophan to kynurenine controls mood changes, and maintaining a steady tryptophan concentration is expected to help overcome mood changes that trigger smoking recurrence. The microparticles produced by spray-drying were confirmed to include loose agglomerates, which are amenable to inhalation and free dispersion. In-vivo studies revealed that drug action is quick with drug delivery and retention at the site of action.
Conclusion: The synergistic effect of the novel formulation’s sustained concentration of tryptophan and tyrosine and inhibition of AChE could diminish the recurrence of smoking. Dry powder inhalation of the formulated drug offers a new and strong method of drug delivery to the alveolus, making it a convenient route of administration that could be superior to other modes of administration in smoking cessation.

Keywords


  1. Balfour DJ, Wright AE, Benwell ME, Birrell CE. The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res. 2000;113(1-2):73- 83. doi: 10.1016/s0166-4328(00)00202-3.
  2. Stauffer HP, Riedwyl H. Interaction and pH dependence of effects of nicotine and carbon monoxide in cigarette smoke inhalation experiments with rats. Agents Actions. 1977;7(5- 6):579-88. doi: 10.1007/bf02111133.
  3. Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001;4(12):1224-9. doi: 10.1038/nn769.
  4. Tomkins DM, Sellers EM. Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ. 2001;164(6):817-21.
  5. Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature. 1996;382(6588):255-7. doi: 10.1038/382255a0.
  6. Hamishehkar H, Rahimpour Y, Javadzadeh Y. The role of carrier in dry powder inhaler. In: Sezer AD, ed. Recent Advances in Novel Drug Carrier Systems. IntechOpen; 2012. doi: 10.5772/51209.
  7. West R, Hajek P, Foulds J, Nilsson F, May S, Meadows A. A comparison of the abuse liability and dependence potential of nicotine patch, gum, spray and inhaler. Psychopharmacology (Berl). 2000;149(3):198-202. doi: 10.1007/s002130000382.
  8. Bowen DJ, Spring B, Fox E. Tryptophan and high-carbohydrate diets as adjuncts to smoking cessation therapy. J Behav Med. 1991;14(2):97-110. doi: 10.1007/bf00846173.
  9. Sud S, Kamath A. Methods of size reduction and factors affecting size reduction in pharmaceutics. Int Res J Pharm. 2013;4(8):57-64. doi: 10.7897/2230-8407.04810.
  10. Munafò MR, Mannie ZN, Cowen PJ, Harmer CJ, McTavish SB. Effects of acute tyrosine depletion on subjective craving and selective processing of smoking-related cues in abstinent cigarette smokers. J Psychopharmacol. 2007;21(8):805-14. doi: 10.1177/0269881107077216 .
  11. Dowlati Y, de Jesus DR, Selby P, Fan I, Meyer JH. Depressed mood induction in early cigarette withdrawal is unaffected by acute monoamine precursor supplementation. Neuropsychiatr Dis Treat. 2019;15:311-21. doi: 10.2147/ndt.S172334 .
  12. Venugopalan VV, Casey KF, O’Hara C, O’Loughlin J, Benkelfat C, Fellows LK, et al. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology. 2011;36(12):2469- 76. doi: 10.1038/npp.2011.135.
  13. Hughes JR, Stead LF, Lancaster T. Antidepressants for smoking cessation. The Cochrane Database of Systematic Reviews. 2000 (4):CD000031. doi: 10.1002/14651858.cd000031.
  14. Hitsman B, Spring B, Wolf W, Pingitore R, Crayton JW, Hedeker D. Effects of acute tryptophan depletion on negative symptoms and smoking topography in nicotine-dependent schizophrenics and nonpsychiatric controls. Neuropsychopharmacology. 2005;30(3):640-8. doi: 10.1038/ sj.npp.1300651.
  15. Pergadia M, Spring B, Konopka LM, Twardowska B, Shirazi P, Crayton JW. Double-blind trial of the effects of tryptophan depletion on depression and cerebral blood flow in smokers. Addict Behav. 2004;29(4):665-71. doi: 10.1016/j. addbeh.2004.02.009.
  16. Perugini M, Mahoney C, Ilivitsky V, Young SN, Knott V. Effects of tryptophan depletion on acute smoking abstinence symptoms and the acute smoking response. Pharmacol Biochem Behav. 2003;74(3):513-22. doi: 10.1016/s0091- 3057(02)01038-9.
  17. Knott V, Thompson A, Shah D, Ilivitsky V. Neural expression of nicotine’s antidepressant properties during tryptophan depletion: an EEG study in healthy volunteers at risk for depression. Biol Psychol. 2012;91(2):190-200. doi: 10.1016/j. biopsycho.2012.06.002.
  18. Hitsman B, Spring B, Pingitore R, Munafò M, Hedeker D. Effect of tryptophan depletion on the attentional salience of smoking cues. Psychopharmacology (Berl). 2007;192(3):317- 24. doi: 10.1007/s00213-007-0722-2.
  19. Hajizadeh A, Howes S, Theodoulou A, Klemperer E, Hartmann- Boyce J, Livingstone-Banks J, Lindson N. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2023 May 24;5(5):CD000031. doi: 10.1002/14651858.CD000031. pub6. PMID: 37230961; PMCID: PMC10207863. 20.
  20. Bel N, Artigas F. Reduction of serotonergic function in rat brain by tryptophan depletion: effects in control and fluvoxamine-treated rats. J Neurochem. 1996;67(2):669-76. doi: 10.1046/j.1471-4159.1996.67020669.x.
  21. Bongiovanni R, Newbould E, Jaskiw GE. Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels. Brain Res. 2008;1190:39-48. doi: 10.1016/j.brainres.2007.10.079.
  22. Leyton M, Young SN, Pihl RO, Etezadi S, Lauze C, Blier P, et al. Effects on mood of acute phenylalanine/tyrosine depletion in healthy women. Neuropsychopharmacology. 2000;22(1):52- 63. doi: 10.1016/s0893-133x(99)00086-x.
  23. Oldman AD, Walsh AE, Salkovskis P, Laver DA, Cowen PJ. Effect of acute tryptophan depletion on mood and appetite in healthy female volunteers. J Psychopharmacol. 1994;8(1):8- 13. doi: 10.1177/026988119400800102.
  24. Hickey AJ, Thompson D. Pharmaceutical Inhalation Aerosol Technology. 2nd ed. USA: Marcel Dekker; 2004.
  25. Chougule MB, Padhi BK, Jinturkar KA, Misra A. Development of dry powder inhalers. Recent Pat Drug Deliv Formul. 2007;1(1):11-21. doi: 10.2174/187221107779814159.
  26. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209-27.
  27. Swain K, Giri M, Gupta RN, Arora VK, Saha S. Dry powder inhaler a review. Res J Pharm Biol Chem Sci. 2012;3(3):1346- 56.
  28. Simon A, Amaro MI, Cabral LM, Healy AM, de Sousa VP. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int J Pharm. 2016;501(1-2):124-38. doi: 10.1016/j.ijpharm.2016.01.066.
  29. Yang XF, Xu Y, Qu DS, Li HY. The influence of amino acids on aztreonam spray-dried powders for inhalation. Asian J Pharm Sci. 2015;10(6):541-8. doi: 10.1016/j.ajps.2015.08.002.
  30. Cui Y, Zhang X, Wang W, Huang Z, Zhao Z, Wang G, et al. Moisture-resistant co-spray-dried netilmicin with L-leucine as dry powder inhalation for the treatment of respiratory infections. Pharmaceutics. 2018;10(4):252. doi: 10.3390/ pharmaceutics10040252.
  31. Murthy TE, Priya MB, Satyanarayana V. Formulation and evaluation of dry powder inhaler for tiotropium bromide. International Journal of Innovative Pharmaceutical Research. 2010;1(1):14-22.
  32. Singh DJ, Jain RR, Soni PS, Abdul S, Darshana H, Gaikwad RV, et al. Preparation and evaluation of surface modified lactose particles for improved performance of fluticasone propionate dry powder inhaler. J Aerosol Med Pulm Drug Deliv. 2015;28(4):254-67. doi: 10.1089/jamp.2014.1146.
  33. Safdari A, Darbandi MA. Propranolol micro particle production by spray drying technique and evaluation of the in vitro and in vivo lung deposition. Interv Cardiol J. 2016;2(2):14. doi: 10.21767/2471-8157.100023.
  34. Teymouri Rad R, Dadashzadeh S, Vatanara A, Alavi S, Ghasemian E, Mortazavi SA. Tadalafil nanocomposites as a dry powder formulation for inhalation, a new strategy for pulmonary arterial hypertension treatment. Eur J Pharm Sci. 2019;133:275-86. doi: 10.1016/j.ejps.2019.04.001 .
  35. Chaurasiya B, Zhou M, Tu J, Sun C. Design and validation of a simple device for insufflation of dry powders in a mice model. Eur J Pharm Sci. 2018;123:495-501. doi: 10.1016/j. ejps.2018.08.010 .
  36. L-tryptophan. Monograph. Altern Med Rev. 2006;11(1):52-6.
  37. L-tryptophan. Monograph. Altern Med Rev. 2007;12(4):364- 68.
  38. Zaragozá R. Transport of amino acids across the blood-brain barrier. Front Physiol. 2020;11:973. doi: 10.3389/ fphys.2020.00973.
  39. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6 Suppl 1):1539S-47S. doi: 10.1093/ jn/137.6.1539S.
  40. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31(9):1091- 120. doi: 10.1177/0269881117725915.
  41. Lieberman HR, Corkin S, Spring BJ, Growdon JH, Wurtman RJ. Mood, performance, and pain sensitivity: changes induced by food constituents. J Psychiatr Res. 1982;17(2):135-45. doi: 10.1016/0022-3956(82)90015-2.
  42. Pratt LA, Brody DJ. Depression in the United States household population, 2005-2006. NCHS Data Brief. 2008 Sep;(7):1-8. PMID: 19389321.
  43. Gowda DV, Vishnu DM, Meenakshi S, Siddaramaiah H, Vishal KG. Formulation and evaluation of dry powders containing anti tuberculosis drugs for pulmonary delivery. Indo Am J Pharm Sci. 2013;3(12):1239-48.
  44. Subrahmanyam CV. Textbook of Physical Pharmaceutics. 2nd ed. New Delhi: Vallabh Prakashan; 2000. p. 180-228.
  45. Simon A, Amaro MI, Cabral LM, Healy AM, de Sousa VP. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int J Pharm. 2016;501(1-2):124-38. doi: 10.1016/j.ijpharm.2016.01.066.
  46. Caramori G, Adcock I. Pharmacology of airway inflammation in asthma and COPD. Pulm Pharmacol Ther. 2003;16(5):247- 77. doi: 10.1016/s1094-5539(03)00070-1 .
  47. Shabatina TI, Gromova YA, Vernaya OI, Soloviev AV, Shabatin AV, Morosov YN, Astashova IV, Melnikov MY. Pharmaceutical Nanoparticles Formation and Their Physico- Chemical and Biomedical Properties. Pharmaceuticals (Basel). 2024 May 5;17(5):587. doi: 10.3390/ph17050587. PMID: 38794157; PMCID: PMC11124199.
  48. Seville PC, Learoyd TP, Li HY, Williamson IJ, Birchall JC. Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery. Powder Technol. 2007;178(1):40-50. doi: 10.1016/j. powtec.2007.03.046.
  49. Sathishkumar K, Kumaresan C. Novel, sustained-release, dry-powder inhalable formulation for montelukast sodium. Int Res J Pharm. 2016;7(12):97-103. doi: 10.7897/2230- 8407.0712154.
  50. Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Suryaprakash Reddy C, Bhargav E. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci. 2018;13(1):91-100. doi: 10.1016/j.ajps.2017.08.005.
  51. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and Chronic Obstructive Pulmonary Disease (COPD) - Differences and Similarities. Mater Sociomed. 2012;24(2):100-5. doi: 10.5455/msm.2012.24.100-105. PMID: 23678316; PMCID: PMC3633485.
  52. Chan, H. W., Chow, S., Zhang, X., Zhao, Y., Tong, H. H. Y., and Chow, S. F. (2023). Inhalable nanoparticle-based dry powder formulations for respiratory diseases: challenges and strategies for translational research. AAPS PharmSciTech 24 (4), 98. doi:10.1208/s12249-023-02559-y
  53. Manser M, Jeyanathan V, Jeyanathan M, Feng X, Dolovich MB, Xing Z, Cranston ED, Thompson MR. Design Considerations for Intratracheal Delivery Devices to Achieve Proof-of-Concept Dry Powder Biopharmaceutical Delivery in Mice. Pharm Res. 2023 May;40(5):1165-1176. doi: 10.1007/ s11095-023-03492-2. Epub 2023 Mar 29. PMID: 36991226; PMCID: PMC10057681.
  54. Lesniak WG, Jyoti A, Mishra MK, Louissaint N, Romero R, Chugani DC, et al. Concurrent quantification of tryptophan and its major metabolites. Anal Biochem. 2013;443(2):222- 31. doi: 10.1016/j.ab.2013.09.001.
  55. Basheir BE, Elbashir AA. Spectrophotometric methods for the determination of L-tyrosine in pharmaceutical formulations. ChemXpress. 2015;8(2):95-101.
  56. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67- 74. doi: .1038/nrd2153.
  57. de Matas M, Shao Q, Richardson CH, Chrystyn H. Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks. Eur J Pharm Sci. 2008;33(1):80-90. doi: 10.1016/j.ejps.2007.10.001.
  58. Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. Mol Biomed. 2020;1(1):11. doi: 10.1186/s43556-020-00014-z.
  59. Komase Y, Asako A, Kobayashi A, Sharma R. Ease-of-use preference for the ELLIPTA® dry powder inhaler over a commonly used single-dose capsule dry powder inhaler by inhalation device-naïve Japanese volunteers aged 40 years or older. Int J Chron Obstruct Pulmon Dis. 2014;9:1365-75. doi: 10.2147/copd.S72762.
  60. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J Aerosol Med Pulm Drug Deliv. 2011;24(4):175- 82. doi: 10.1089/jamp.2010.0855.
  61. Navabi N, Hashemipour MA, Ramezani R, Karimiafshar S, Najminouri F. Determining the short-term effects of smoking cessation using nicotine gum on oral health-related quality of life: a pilot study. Addict Health. 2024;16(1):23-7. doi: 10.34172/ahj.2024.1443.
  62. Aryanpur M, Ghorbani R, Rashno S, Heydari G, Kazempour- Dizaji M, Hessami Z, et al. The effect of varenicline on smoking cessation in hospitalized patients: a systematic review and meta-analysis. Addict Health. 2024;16(2):122-9. doi: 10.34172/ahj.2024.1328.
  63. Lengel D, Kenny PJ. New medications development for smoking cessation. Addict Neurosci. 2023;7. doi: 10.1016/j. addicn.2023.100103.