Assessment of Attentional Bias in Internet Gaming Disorder Using the Addiction Stroop Task and Event-Related Potentials

Document Type : Original Article

Authors

1 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

2 Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran

4 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

5 The Park, Mental Health, West Moreton Hospital And Health Service, Brisbane, Australia

10.34172/ahj.1571

Abstract

Background: Internet Gaming Disorder (IGD) is defined by a loss of control over gaming habits, prioritizing gaming above daily responsibilities, and persistent engagement despite detrimental outcomes. As a rising public health challenge, IGD significantly disrupts individuals’ lives. Investigating attentional biases in IGD is vital for designing targeted interventions.
Methods: Attentional bias was measured in individuals with IGD using the Addiction Stroop Task. The participants were classified into three cohorts: IGD, Recreational Game Users, and non-gaming controls. Electroencephalography/event-related potential (EEG/ERP) data were collected and analyzed from electrodes Pz, Cz, and CPz.
Findings: Compared to the RGU and control groups, the IGD group displayed significantly greater P300 amplitudes and prolonged response latencies to both gaming-related and neutral stimuli. Furthermore, the IGD group reported elevated impulsivity, anxiety, and depression levels relative to the other groups.
Conclusion: Contrary to conventional attentional bias models in addiction—which emphasize preferential attention to addiction-related cues—individuals with IGD exhibited intensified neural reactivity to all stimuli. This suggests excessive cognitive resource mobilization, potentially indicative of hyperarousal or dysregulated neurobiological processes.

Keywords


  1. Gentile DA, Bailey K, Bavelier D, Brockmyer JF, Cash H, Coyne SM, et al. Internet gaming disorder in children and adolescents. Pediatrics. 2017;140(Suppl 2):S81-5. doi: 10.1542/peds.2016-1758H.
  2. Higuchi S, Nakayama H, Matsuzaki T, Mihara S, Kitayuguchi T. Application of the eleventh revision of the International Classification of Diseases gaming disorder criteria to treatment-seeking patients: comparison with the fifth edition of the diagnostic and statistical manual of mental disorders internet gaming disorder criteria. J Behav Addict. 2021;10(1):149-58. doi: 10.1556/2006.2020.00099.
  3. Zhou X, Wu R, Liu C, Kou J, Chen Y, Pontes HM, et al. Higher levels of (internet) gaming disorder symptoms according to the WHO and APA frameworks associate with lower striatal volume. J Behav Addict. 2020;9(3):598-605. doi: 10.1556/2006.2020.00066.
  4. Dong G, Potenza MN. A cognitive-behavioral model of internet gaming disorder: theoretical underpinnings and clinical implications. J Psychiatr Res. 2014;58:7-11. doi: 10.1016/j.jpsychires.2014.07.005.
  5. Dong G, Potenza MN. Risk-taking and risky decision-making in internet gaming disorder: implications regarding online gaming in the setting of negative consequences. J Psychiatr Res. 2016;73:1-8. doi: 10.1016/j.jpsychires.2015.11.011.
  6. Dowling NA. Issues raised by the DSM-5 internet gaming disorder classification and proposed diagnostic criteria. Addiction. 2014;109(9):1408-9. doi: 10.1111/add.12554.
  7. Petry NM, O’Brien CP. Internet gaming disorder and the DSM- 5. Addiction. 2013;108(7):1186-7. doi: 10.1111/add.12162.
  8. Petry NM, Rehbein F, Ko CH, O’Brien CP. Internet gaming disorder in the DSM-5. Curr Psychiatry Rep. 2015;17(9):72. doi: 10.1007/s11920-015-0610-0.
  9. Rehbein F, Kliem S, Baier D, Mößle T, Petry NM. Prevalence of internet gaming disorder in German adolescents: diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction. 2015;110(5):842-51. doi: 10.1111/add.12849.
  10. Jorgenson AG, Hsiao RC, Yen CF. Internet addiction and other behavioral addictions. Child Adolesc Psychiatr Clin N Am. 2016;25(3):509-20. doi: 10.1016/j.chc.2016.03.004.
  11. Kuss DJ, Lopez-Fernandez O. Internet addiction and problematic internet use: a systematic review of clinical research. World J Psychiatry. 2016;6(1):143-76. doi: 10.5498/ wjp.v6.i1.143.
  12. Liu L, Yip SW, Zhang JT, Wang LJ, Shen ZJ, Liu B, et al. Activation of the ventral and dorsal striatum during cue reactivity in internet gaming disorder. Addict Biol. 2017;22(3):791-801. doi: 10.1111/adb.12338.
  13. Park M, Choi JS, Park SM, Lee JY, Jung HY, Sohn BK, et al. Dysfunctional information processing during an auditory event-related potential task in individuals with internet gaming disorder. Transl Psychiatry. 2016;6(1):e721. doi: 10.1038/ tp.2015.215.
  14. Yuan K, Yu D, Cai C, Feng D, Li Y, Bi Y, et al. Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol. 2017;22(3):813-22. doi: 10.1111/adb.12348.
  15. Byeon G, Jo SJ, Park JI, Jeong H, Lee HK, Yim HW. Risk factors and outcomes of internet gaming disorder identified in Korean prospective adolescent cohort study. J Behav Addict. 2022;11(4):1035-43. doi: 10.1556/2006.2022.00071.
  16. Fam JY. Prevalence of internet gaming disorder in adolescents: a meta-analysis across three decades. Scand J Psychol. 2018;59(5):524-31. doi: 10.1111/sjop.12459.
  17. Chiang CL, Zhang MW, Ho RC. Prevalence of internet gaming disorder in medical students: a meta-analysis. Front Psychiatry. 2021;12:760911. doi: 10.3389/fpsyt.2021.760911.
  18. Ferguson CJ. Do angry birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspect Psychol Sci. 2015;10(5):646- 66. doi: 10.1177/1745691615592234.
  19. Hulka LM, Eisenegger C, Preller KH, Vonmoos M, Jenni D, Bendrick K, et al. Altered social and non-social decision-making in recreational and dependent cocaine users. Psychol Med. 2014;44(5):1015-28. doi: 10.1017/s0033291713001839.
  20. Smith DG, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD. Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users. Biol Psychiatry. 2014;75(2):124-31. doi: 10.1016/j. biopsych.2013.05.019.
  21. Desai RA, Krishnan-Sarin S, Cavallo D, Potenza MN. Video-gaming among high school students: health correlates, gender differences, and problematic gaming. Pediatrics. 2010;126(6):e1414-24. doi: 10.1542/peds.2009-2706.
  22. Dong G, Wang L, Du X, Potenza MN. Gaming increases craving to gaming-related stimuli in individuals with internet gaming disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(5):404-12. doi: 10.1016/j.bpsc.2017.01.002.
  23. Desai RA, Potenza MN. Gender differences in the associations between past-year gambling problems and psychiatric disorders. Soc Psychiatry Psychiatr Epidemiol. 2008;43(3):173- 83. doi: 10.1007/s00127-007-0283-z.
  24. Yip SW, Desai RA, Steinberg MA, Rugle L, Cavallo DA, Krishnan-Sarin S, et al. Health/functioning characteristics, gambling behaviors, and gambling-related motivations in adolescents stratified by gambling problem severity: findings from a high school survey. Am J Addict. 2011;20(6):495-508. doi: 10.1111/j.1521-0391.2011.00180.x.
  25. Dong G, Li H, Wang L, Potenza MN. Cognitive control and reward/loss processing in internet gaming disorder: results from a comparison with recreational internet game-users. Eur Psychiatry. 2017;44:30-8. doi: 10.1016/j.eurpsy.2017.03.004.
  26. Wang Y, Wu L, Wang L, Zhang Y, Du X, Dong G. Impaired decision-making and impulse control in internet gaming addicts: evidence from the comparison with recreational internet game users. Addict Biol. 2017;22(6):1610-21. doi: 10.1111/adb.12458.
  27. Zhang J, Hu Y, Li H, Zheng H, Xiang M, Wang Z, et al. Altered brain activities associated with cue reactivity during forced break in subjects with internet gaming disorder. Addict Behav. 2020;102:106203. doi: 10.1016/j.addbeh.2019.106203.
  28. Noël X, Van der Linden M, d’Acremont M, Colmant M, Hanak C, Pelc I, et al. Cognitive biases toward alcohol-related words and executive deficits in polysubstance abusers with alcoholism. Addiction. 2005;100(9):1302-9. doi: 10.1111/j.1360-0443.2005.01125.x.
  29. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361-70. doi: 10.1016/j.tins.2008.04.001.
  30. Schouw ML, Caan MW, Geurts HM, Schmand B, Booij J, Nederveen AJ, et al. Monoaminergic dysfunction in recreational users of dexamphetamine. Eur Neuropsychopharmacol. 2013;23(11):1491-502. doi: 10.1016/j.euroneuro.2013.01.005.
  31. Thaler RH, Shefrin HM. An economic theory of self-control. J Polit Econ. 1981;89(2):392-406. doi: 10.1086/260971.
  32. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-38. doi: 10.1038/npp.2009.110.
  33. Metcalf O, Pammer K. Attentional bias in excessive massively multiplayer online role-playing gamers using a modified Stroop task. Comput Human Behav. 2011;27(5):1942-7. doi: 10.1016/j.chb.2011.05.001.
  34. Klaus H, Rosemann M, Gable GG. What is ERP? Inf Syst Front. 2000;2(2):141-62. doi: 10.1023/a:1026543906354.
  35. Herzog ND, Steinfath TP, Tarrasch R. Critical dynamics in spontaneous resting-state oscillations are associated with the attention-related P300 ERP in a Go/Nogo task. Front Neurosci. 2021;15:632922. doi: 10.3389/fnins.2021.632922.
  36. Fathi M, Mazhari S, Pourrahimi AM, Poormohammad A, Sardari S. Proactive and reactive inhibitory control are differently affected by video game addiction: an event-related potential study. Brain Behav. 2022;12(6):e2584. doi: 10.1002/ brb3.2584.
  37. Petry NM, Rehbein F, Gentile DA, Lemmens JS, Rumpf HJ, Mößle T, et al. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction. 2014;109(9):1399-406. doi: 10.1111/add.12457.
  38. American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: APA; 2018.
  39. Young KS. Internet Addiction Test (IAT). 2009. Available from: http://netaddiction.com/index.php?option = combfquiz&­view = onepage&catid = 46&Itemid = 106.
  40. Idris MF, Saini SM, Sharip S, Idris NF, Ab Aziz NF. Association between the internet gaming disorder and anxiety and depression among university students during COVID-19 pandemic. Healthcare (Basel). 2023;11(8):1103. doi: 10.3390/ healthcare11081103.
  41. Deleuze J, Nuyens F, Rochat L, Rothen S, Maurage P, Billieux J. Established risk factors for addiction fail to discriminate between healthy gamers and gamers endorsing DSM-5 internet gaming disorder. J Behav Addict. 2017;6(4):516-24. doi: 10.1556/2006.6.2017.074.
  42. van Rooij AJ, Schoenmakers TM, van den Eijnden RJ, Vermulst AA, van de Mheen D. Video game addiction test: validity and psychometric characteristics. Cyberpsychol Behav Soc Netw. 2012;15(9):507-11. doi: 10.1089/cyber.2012.0007.
  43. Kuss DJ, Pontes HM, Griffiths MD. Neurobiological correlates in internet gaming disorder: a systematic literature review. Front Psychiatry. 2018;9:166. doi: 10.3389/fpsyt.2018.00166.
  44. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97-113. doi: 10.1016/0028-3932(71)90067-4.
  45. Beck AT, Steer RA, Brown G. Beck Depression Inventory–II (BDI-II). Pearson; 1996. doi: 10.1037/t00742-000.
  46. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893-7. doi: 10.1037//0022- 006x.56.6.893.
  47. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51(6):768- 74. doi: 10.1002/1097-4679(199511)51:6 < 768::aid-jclp2270510607 > 3.0.co;2-1.
  48. Cox WM, Salehi Fadardi J, Pothos EM. The addiction-stroop test: theoretical considerations and procedural recommendations. Psychol Bull. 2006;132(3):443-76. doi: 10.1037/0033-2909.132.3.443.
  49. Pourrahimi AM, Mazhari S, Shabani M, Moghadas Tabrizi Y, Sheibani V. Numerical distance effect in patients with schizophrenia. Neurosci Lett. 2016;617:1-5. doi: 10.1016/j. neulet.2016.01.065.
  50. American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders: DSM-5. Washington, DC: APA; 2013.
  51. Sardari S, Pourrahimi AM, Talebi H, Mazhari S. Symmetrical electrophysiological brain responses to unilateral and bilateral auditory stimuli suggest disrupted spatial processing in schizophrenia. Sci Rep. 2019;9(1):16454. doi: 10.1038/ s41598-019-52931-x.
  52. Huang G, Han C, Yang J, Ye C, Javed I, Liu F, et al. Neural basis of the attention bias during addiction stroop task in methamphetamine-dependent patients with and without a history of psychosis: an ERP study. Front Psychol. 2023;14:1173711. doi: 10.3389/fpsyg.2023.1173711.
  53. Demirayak P, Kıyı İ, İşbitiren Y, Yener G. Cognitive load associates prolonged P300 latency during target stimulus processing in individuals with mild cognitive impairment. Sci Rep. 2023;13(1):15956. doi: 10.1038/s41598-023-43132-8.
  54. Shen-Yi D, Qiang-Guo M, Xiao-Yi Y. Attentional bias to addiction-related stimuli in internet addition patients: an ERP study. J Psychol Sci. 2011;34(6):1302-7.
  55. Şalvarlı Şİ, Griffiths MD. The association between internet gaming disorder and impulsivity: a systematic review of literature. Int J Ment Health Addict. 2022;20(1):92-118. doi: 10.1007/s11469-019-00126-w.
  56. Kakul F, Javed S. Internet gaming disorder: an interplay of cognitive psychopathology. Asian J Soc Health Behav. 2023;6(1):36-45.
  57. Sharifat H, Suppiah S. Electroencephalography-detected neurophysiology of internet addiction disorder and internet gaming disorder in adolescents - a review. Med J Malaysia. 2021;76(3):401-13.
  58. Kim SN, Kim M, Lee TH, Lee JY, Park S, Park M, et al. Increased attentional bias toward visual cues in internet gaming disorder and obsessive-compulsive disorder: an event-related potential study. Front Psychiatry. 2018;9:315. doi: 10.3389/ fpsyt.2018.00315.
  59. Hao Y, Li Y, Li J, Peng H, Zhao Q, Hu B. Abnormal attentional bias of non-drug reward in abstinent heroin addicts: an ERP study. IEEE Trans Affect Comput. 2020;13(3):1664-76. doi: 10.1109/taffc.2020.3025799.
  60. Bellebaum C, Kobza S, Thiele S, Daum I. It was not MY fault: event-related brain potentials in active and observational learning from feedback. Cereb Cortex. 2010;20(12):2874-83. doi: 10.1093/cercor/bhq038.
  61. Rawls E, Miskovic V, Moody SN, Lee Y, Shirtcliff EA, Lamm C. Feedback-related negativity and frontal midline theta reflect dissociable processing of reinforcement. Front Hum Neurosci. 2019;13:452. doi: 10.3389/fnhum.2019.00452.
  62. Balconi M, Venturella I, Finocchiaro R. Evidences from rewarding system, FRN and P300 effect in internet-addiction in young people. Brain Sci. 2017;7(7):81. doi: 10.3390/ brainsci7070081.
  63. Zhao Q, Li H, Hu B, Li Y, Gillebert CR, Mantini D, et al. Neural correlates of drug-related attentional bias in heroin dependence. Front Hum Neurosci. 2017;11:646. doi: 10.3389/fnhum.2017.00646.
  64. Rostami F, Esteki A, Sarabi-Jamab A. Investigating the interference control in internet addiction disorder: evidence from brain oscillatory activity associated with Stroop task. Basic Clin Neurosci. 2023. doi: 10.32598/bcn.2023.4974.1.
  65. Jones A, Petrovskaya E, Stafford T. Exploring the multiverse of analysis options for the alcohol Stroop. Behav Res Methods. 2024;56(4):3578-88. doi: 10.3758/s13428-024-02377-5.