Water-pipe Tobacco Components and their Association with Oxidative Stress

Document Type : Review Article(s)

Authors

1 Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

2 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

3 Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

10.34172/ahj.1487

Abstract

Oxidative stress (OS) results from an imbalance between the formation and detoxification of reactive species. Although reactive 
species at low or moderate levels play numerous physiological roles, high concentrations can lead to disturbances in signaling 
and metabolic pathways and cause different metabolic, chronic, and age-related disorders. Several endogenous and exogenous 
processes may lead to the formation of reactive species. The severity of OS can be reduced with the help of antioxidants. Tobacco 
is one of the most important environmental factors contributing to reactive species production. After cigarette smoking, waterpipe tobacco (WPT) smoking is ranked as the second most popular tobacco product. Its popularity is proliferating due to flavored 
products, social acceptability, etc. However, studies have shown that WPT smoking is associated with an increased risk of arterial 
stiffness, ischemic heart disease, and several cancer types. In this study, we aimed to review the most recent evidence on WPT 
smoking constituents and their association with OS.

Highlights

Aida Norouzi: (Google Scholar) (PubMed)

Tahereh Dehghani: (Google Scholar) (PubMed)

Ebrahim Eftekhar: (Google Scholar) (PubMed)

 

 

Keywords


1. Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu 
MG, et al. Positive aspects of oxidative stress at different 
levels of the human body: a review. Antioxidants (Basel). 
2022;11(3):572. doi: 10.3390/antiox11030572.
2. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, 
Gonelli A, et al. Oxidative stress: role of physical exercise and 
antioxidant nutraceuticals in adulthood and aging. Oncotarget. 
2018;9(24):17181-98. doi: 10.18632/oncotarget.24729.
3. Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, 
Kothandaraman N, Cakar Z. Overview and sources of 
reactive oxygen species (ROS) in the reproductive system. 
In: Agarwal A, Sharma R, Gupta S, Harlev A, Ahmad G, du 
Plessis SS, et al, eds. Oxidative Stress in Human Reproduction: 
Shedding Light on a Complicated Phenomenon. Cham: 
Springer International Publishing; 2017. p. 1-16. doi: 
10.1007/978-3-319-48427-3_1.
4. García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz 
EG. The role of oxidative stress in physiopathology and 
pharmacological treatment with pro- and antioxidant 
properties in chronic diseases. Oxid Med Cell Longev. 
2020;2020:2082145. doi: 10.1155/2020/2082145.
5. Weidinger A, Kozlov AV. Biological activities of reactive 
oxygen and nitrogen species: oxidative stress versus signal 
transduction. Biomolecules. 2015;5(2):472-84. doi: 10.3390/
biom5020472.
6. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, 
Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: 
back and forth in the pathophysiology of chronic diseases. 
Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694 .
7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants 
in disease and health. Int J Biomed Sci. 2008;4(2):89-96.
8. Forman HJ, Zhang H. Targeting oxidative stress in disease: 
promise and limitations of antioxidant therapy. Nat Rev Drug 
Discov. 2021;20(9):689-709. doi: 10.1038/s41573-021-
00233-1.
9. Salmon TB, Evert BA, Song B, Doetsch PW. Biological 
consequences of oxidative stress-induced DNA damage 
in Saccharomyces cerevisiae. Nucleic Acids Res. 
2004;32(12):3712-23. doi: 10.1093/nar/gkh696.
10. Finaud J, Lac G, Filaire E. Oxidative stress: relationship with 
exercise and training. Sports Med. 2006;36(4):327-58. doi: 
10.2165/00007256-200636040-00004.
11. Reczek CR, Chandel NS. ROS-dependent signal transduction. 
Curr Opin Cell Biol. 2015;33:8-13. doi: 10.1016/j.
ceb.2014.09.010.
12. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev 
Biochem. 2017;86:715-48. doi: 10.1146/annurevbiochem-061516-045037.
13. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. 
Oxidative stress and antioxidant defense. World Allergy Organ 
J. 2012;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613.
14. Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernández YL, 
Hernández-Cruz EY, Pedraza-Chaverri J. RONS and oxidative 
stress: an overview of basic concepts. Oxygen. 2022; 2(4):437-
478. doi: 10.3390/oxygen2040030.
15. Al-Gubory KH. Environmental factors, oxidative stress, 
and adverse developmental outcomes. In: Laher I, ed. 
Systems Biology of Free Radicals and Antioxidants. 
Berlin, Heidelberg: Springer; 2014. p. 581-96. doi:10.1007/978-3-642-30018-9_38.
16. Gupta PC. The public health impact of tobacco. Curr Sci. 
2001;81(5):475-81.
17. Golbidi S, Li H, Laher I. Oxidative stress: a unifying 
mechanism for cell damage induced by noise, (water-pipe) 
smoking, and emotional stress-therapeutic strategies targeting 
redox imbalance. Antioxid Redox Signal. 2018;28(9):741-59. 
doi: 10.1089/ars.2017.7257.
18. Taati B, Arazi H, Suzuki K. Oxidative stress and inflammation 
induced by waterpipe tobacco smoking despite possible 
protective effects of exercise training: a review of the 
literature. Antioxidants (Basel). 2020;9(9):777. doi: 10.3390/
antiox9090777.
19. Badran M, Laher I. Waterpipe (shisha, hookah) smoking, 
oxidative stress and hidden disease potential. Redox Biol. 
2020;34:101455. doi: 10.1016/j.redox.2020.101455.
20. Darawshy F, Abu Rmeileh A, Kuint R, Berkman N. Waterpipe 
smoking: a review of pulmonary and health effects. Eur Respir 
Rev. 2021;30(160):200374. doi: 10.1183/16000617.0374-
2020.
21. Al-Numair K, Barber-Heidal K, Al-Assaf A, El-Desoky G. 
Water-pipe (shisha) smoking influences total antioxidant 
capacity and oxidative stress of healthy Saudi males. J Food 
Agric Environ. 2007;5(3-4):17-22.
22. Knishkowy B, Amitai Y. Water-pipe (narghile) smoking: an 
emerging health risk behavior. Pediatrics. 2005;116(1):e113-
9. doi: 10.1542/peds.2004-2173.
23. Jaccard G, Tafin Djoko D, Korneliou A, Belushkin M. Analysis 
of waterpipe aerosol constituents in accordance with the ISO 
standard 22486. Toxicol Rep. 2020;7:1344-9. doi: 10.1016/j.
toxrep.2020.10.007.
24. Shihadeh A, Schubert J, Klaiany J, El Sabban M, Luch A, Saliba 
NA. Toxicant content, physical properties and biological 
activity of waterpipe tobacco smoke and its tobacco-free 
alternatives. Tob Control. 2015;24(Suppl 1):i22-30. doi: 
10.1136/tobaccocontrol-2014-051907.
25. Akl EA, Gaddam S, Gunukula SK, Honeine R, Jaoude PA, Irani J. 
The effects of waterpipe tobacco smoking on health outcomes: 
a systematic review. Int J Epidemiol. 2010;39(3):834-57. doi: 
10.1093/ije/dyq002.
26. Al-Belasy FA. The relationship of “shisha” (water pipe) 
smoking to postextraction dry socket. J Oral Maxillofac Surg. 
2004;62(1):10-4. doi: 10.1016/j.joms.2002.11.001.
27. Tamim H, Yunis KA, Chemaitelly H, Alameh M, Nassar 
AH. Effect of narghile and cigarette smoking on newborn 
birthweight. BJOG. 2008;115(1):91-7. doi: 10.1111/j.1471-
0528.2007.01568.x.
28. Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg 
T, Shihadeh A. Acute exposure to waterpipe tobacco smoke 
induces changes in the oxidative and inflammatory markers 
in mouse lung. Inhal Toxicol. 2012;24(10):667-75. doi: 
10.3109/08958378.2012.710918.
29. Nemmar A, Yuvaraju P, Beegam S, John A, Raza H, Ali BH. 
Cardiovascular effects of nose-only water-pipe smoking 
exposure in mice. Am J Physiol Heart Circ Physiol. 
2013;305(5):H740-6. doi: 10.1152/ajpheart.00200.2013.
30. Nemmar A, Yuvaraju P, Beegam S, Ali BH. Short-term noseonly water-pipe (shisha) smoking exposure accelerates 
coagulation and causes cardiac inflammation and oxidative 
stress in mice. Cell Physiol Biochem. 2015;35(2):829-40. doi: 
10.1159/000369741.
31. Alsaad AM, Al-Arifi MN, Maayah ZH, Attafi IM, Alanazi FE, 
Belali OM, et al. Genotoxic impact of long-term cigarette and 
waterpipe smoking on DNA damage and oxidative stress in 
healthy subjects. Toxicol Mech Methods. 2019;29(2):119-27. 
doi: 10.1080/15376516.2018.1528650.
32. Arazi H, Taati B, Rafati Sajedi F, Suzuki K. Salivary antioxidants 
status following progressive aerobic exercise: what are the 
differences between waterpipe smokers and non-smokers? 
Antioxidants (Basel). 2019;8(10):418. doi: 10.3390/
antiox8100418.
33. Ibrahim HM, Waziri BI, Aliyu A, Atiku MK. Effect of shisha 
(water-pipe) smoking on serum lipid profile and antioxidant 
vitamins among smokers in Kano metropolis. SAR J Med 
Biochem. 2022;3(3):58-64. doi: 10.36346/sarjmb.2022.
v03i03.005.
34. Rababa’h AM, Sultan BB, Alzoubi KH, Khabour OF, Ababneh 
MA. Exposure to waterpipe smoke induces renal functional 
and oxidative biomarkers variations in mice. Inhal Toxicol. 
2016;28(11):508-13. doi: 10.1080/08958378.2016.1210703.
35. Al-Sawalha NA, Migdadi AM, Alzoubi KH, Khabour OF, 
Qinna NA. Effect of waterpipe tobacco smoking on airway 
inflammation in murine model of asthma. Inhal Toxicol. 
2017;29(2):46-52. doi: 10.1080/08958378.2017.1280105.
36. Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin 
J, et al. Nose-only water-pipe smoking effects on airway 
resistance, inflammation, and oxidative stress in mice. J 
Appl Physiol (1985). 2013;115(9):1316-23. doi: 10.1152/
japplphysiol.00194.2013.
37. Charab MA, Abouzeinab NS, Moustafa ME. The protective 
effect of selenium on oxidative stress induced by waterpipe 
(narghile) smoke in lungs and liver of mice. Biol Trace Elem 
Res. 2016;174(2):392-401. doi: 10.1007/s12011-016-0737-9.
38. Jebai R, Ebrahimi Kalan M, Vargas-Rivera M, Osibogun 
O, Li W, Gautam P, et al. Markers of oxidative stress and 
toxicant exposure among young waterpipe smokers in the 
USA. Environ Sci Pollut Res Int. 2021;28(21):26677-83. doi: 
10.1007/s11356-021-12520-w.
39. Khan NA, Lawyer G, McDonough S, Wang Q, Kassem NO, KasPetrus F, et al. Systemic biomarkers of inflammation, oxidative 
stress and tissue injury and repair among waterpipe, cigarette 
and dual tobacco smokers. Tob Control. 2020;29(Suppl 
2):s102-9. doi: 10.1136/tobaccocontrol-2019-054958.
40. Al-Sawalha NA, Alzoubi KH, Khabour OF, Alyacoub W, 
Almahmood Y. Effect of waterpipe tobacco smoke exposure 
during lactation on learning and memory of offspring rats: role 
of oxidative stress. Life Sci. 2019;227:58-63. doi: 10.1016/j.
lfs.2019.04.049.
41. Al-Sawalha NA, Almahmmod YM, Alzoubi KH, Khabour OF, 
Alyacoub WN. Influence of prenatal waterpipe tobacco smoke 
exposure on reproductive hormones and oxidative stress of 
adult male offspring rats. Andrologia. 2019;51(8):e13318. doi: 
10.1111/and.13318.
42. Masjedi MR, Dobaradaran S, Keshmiri S, Taghizadeh F, 
Arfaeinia H, Fanaei F, et al. Use of toenail-bounded heavy 
metals to characterize occupational exposure and oxidative 
stress in workers of waterpipe/cigarette cafés. Environ 
Geochem Health. 2021;43(5):1783-97. doi: 10.1007/s10653-
020-00751-8.
43. Khan NA, Sundar IK, Rahman I. Strain- and sex-dependent 
pulmonary toxicity of waterpipe smoke in mouse. Physiol 
Rep. 2018;6(3):e13579. doi: 10.14814/phy2.13579.
44. Alomari MA, Alzoubi KH, Khabour OF. Differences in 
oxidative stress profile in adolescents smoking waterpipe 
versus cigarettes: the Irbid TRY Project. Physiol Rep. 
2020;8(14):e14512. doi: 10.14814/phy2.14512.
45. Potts DA, Daniels JS. Where there’s smoke there must 
be ire! Nicotine addiction treatment: a review. Mo Med. 
2014;111(1):80-1.
46. Aboaziza E, Eissenberg T. Waterpipe tobacco smoking: what 
is the evidence that it supports nicotine/tobacco dependence? 
Tob Control. 2015;24(Suppl 1):i44-53. doi: 10.1136/tobaccocontrol-2014-051910.
47. Murphy SE. Biochemistry of nicotine metabolism and its 
relevance to lung cancer. J Biol Chem. 2021;296:100722. doi: 
10.1016/j.jbc.2021.100722.
48. Hukkanen J, Jacob P, 3rd, Benowitz NL. Metabolism and 
disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79-
115. doi: 10.1124/pr.57.1.3.
49. Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg 
A. Harmful effects of nicotine. Indian J Med Paediatr Oncol. 
2015;36(1):24-31. doi: 10.4103/0971-5851.151771.
50. Wang LW, He EY, Ghosh D, Day RO, Jones GR, Subbiah 
RN, et al. Severe carbon monoxide poisoning from 
waterpipe smoking: a public health concern. Med J Aust. 
2015;202(8):446-7. doi: 10.5694/mja14.01264.
51. Henning RJ, Johnson GT, Coyle JP, Harbison RD. Acrolein can 
cause cardiovascular disease: a review. Cardiovasc Toxicol. 
2017;17(3):227-36. doi: 10.1007/s12012-016-9396-5.
52. Minna JD. Nicotine exposure and bronchial epithelial cell 
nicotinic acetylcholine receptor expression in the pathogenesis 
of lung cancer. J Clin Invest. 2003;111(1):31-3. doi: 10.1172/
jci17492.
53. Cattaneo MG, D’Atri F, Vicentini LM. Mechanisms of mitogenactivated protein kinase activation by nicotine in small-cell 
lung carcinoma cells. Biochem J. 1997;328(Pt 2):499-503. 
doi: 10.1042/bj3280499.
54. Barr J, Sharma CS, Sarkar S, Wise K, Dong L, Periyakaruppan 
A, et al. Nicotine induces oxidative stress and activates 
nuclear transcription factor kappa B in rat mesencephalic 
cells. Mol Cell Biochem. 2007;297(1-2):93-9. doi: 10.1007/
s11010-006-9333-1.
55. Husain K, Scott BR, Reddy SK, Somani SM. Chronic ethanol 
and nicotine interaction on rat tissue antioxidant defense 
system. Alcohol. 2001;25(2):89-97. doi: 10.1016/s0741-
8329(01)00176-8.
56. Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings 
J, Butler K, et al. Cigarette smoke alters chromatin remodeling 
and induces proinflammatory genes in rat lungs. Am J Respir 
Cell Mol Biol. 2004;31(6):633-42. doi: 10.1165/rcmb.2004-
0006OC.
57. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, et al. Nicotine 
promotes atherosclerosis via ROS-NLRP3-mediated 
endothelial cell pyroptosis. Cell Death Dis. 2018;9(2):171. 
doi: 10.1038/s41419-017-0257-3.
58. Arany I, Grifoni S, Clark JS, Csongradi E, Maric C, Juncos LA. 
Chronic nicotine exposure exacerbates acute renal ischemic 
injury. Am J Physiol Renal Physiol. 2011;301(1):F125-33. doi: 
10.1152/ajprenal.00041.2011.
59. Arany I, Clark J, Reed DK, Juncos LA. Chronic nicotine 
exposure augments renal oxidative stress and injury through 
transcriptional activation of p66shc. Nephrol Dial Transplant. 
2013;28(6):1417-25. doi: 10.1093/ndt/gfs596.
60. Piantadosi CA. Carbon monoxide, reactive oxygen signaling, 
and oxidative stress. Free Radic Biol Med. 2008;45(5):562-9. 
doi: 10.1016/j.freeradbiomed.2008.05.013.
61. Akyol S, Erdogan S, Idiz N, Celik S, Kaya M, Ucar F, et al. 
The role of reactive oxygen species and oxidative stress in 
carbon monoxide toxicity: an in-depth analysis. Redox Rep. 
2014;19(5):180-9. doi: 10.1179/1351000214y.0000000094.
62. von Rappard J, Schönenberger M, Bärlocher L. Carbon 
monoxide poisoning following use of a water pipe/hookah. 
Dtsch Arztebl Int. 2014;111(40):674-9. doi: 10.3238/
arztebl.2014.0674.
63. Harris GK, Shi X. Signaling by carcinogenic metals and metalinduced reactive oxygen species. Mutat Res. 2003;533(1-
2):183-200. doi: 10.1016/j.mrfmmm.2003.08.025.
64. Leonard S, Wang S, Zang L, Castranova V, Vallyathan V, Shi X. 
Role of molecular oxygen in the generation of hydroxyl and 
superoxide anion radicals during enzymatic Cr(VI) reduction 
and its implication to Cr(VI)-induced carcinogenesis. J Environ 
Pathol Toxicol Oncol. 2000;19(1-2):49-60.
65. Stohs SJ, Bagchi D, Hassoun E, Bagchi M. Oxidative 
mechanisms in the toxicity of chromium and cadmium ions. J 
Environ Pathol Toxicol Oncol. 2000;19(3):201-13.
66. Yadav IC, Devi NL. Biomass burning, regional air quality, 
and climate change. In: Nriagu J, ed. Encyclopedia of 
Environmental Health. 2nd ed. Oxford: Elsevier; 2019. p. 386-
91. doi: 10.1016/b978-0-12-409548-9.11022-x.
67. El Morabet R. Effects of outdoor air pollution on human health. 
In: Nriagu J, ed. Encyclopedia of Environmental Health. 2nd 
ed. Oxford: Elsevier; 2019. p. 278-86. doi: 10.1016/b978-0-
12-409548-9.11509-x.
68. Aztatzi-Aguilar O, Valdés-Arzate A, Debray-García Y, 
Calderón-Aranda E, Uribe-Ramirez M, Acosta-Saavedra L, et 
al. Exposure to ambient particulate matter induces oxidative 
stress in lung and aorta in a size- and time-dependent manner 
in rats. Toxicol Res Appl. 2018;2:2397847318794859. doi: 
10.1177/2397847318794859.
69. Braun M, Koger F, Klingelhöfer D, Müller R, Groneberg DA. 
Particulate matter emissions of four different cigarette types 
of one popular brand: influence of tobacco strength and 
additives. Int J Environ Res Public Health. 2019;16(2):263. 
doi: 10.3390/ijerph16020263.
70. Fiala SC, Morris DS, Pawlak RL. Measuring indoor air quality 
of hookah lounges. Am J Public Health. 2012;102(11):2043-5. 
doi: 10.2105/ajph.2012.300751.
71. Haberzettl P, Bhatnagar A, Conklin DJ. Particulate matter 
and oxidative stress–pulmonary and cardiovascular targets 
and consequences. In: Laher I, ed. Systems Biology of Free 
Radicals and Antioxidants. Berlin: Springer; 2014. p. 1557-86. 
doi: 10.1007/978-3-642-30018-9_120.
72. Borm PJ, Kelly F, Künzli N, Schins RP, Donaldson K. Oxidant 
generation by particulate matter: from biologically effective 
dose to a promising, novel metric. Occup Environ Med. 
2007;64(2):73-4. doi: 10.1136/oem.2006.029090.
73. Ghio AJ, Carraway MS, Madden MC. Composition of air 
pollution particles and oxidative stress in cells, tissues, 
and living systems. J Toxicol Environ Health B Crit Rev. 
2012;15(1):1-21. doi: 10.1080/10937404.2012.632359.
74. Kelly FJ. Oxidative stress: its role in air pollution and adverse 
health effects. Occup Environ Med. 2003;60(8):612-6. doi: 
10.1136/oem.60.8.612.
75. Hanzalova K, Rossner P Jr, Sram RJ. Oxidative damage induced 
by carcinogenic polycyclic aromatic hydrocarbons and 
organic extracts from urban air particulate matter. Mutat Res. 
2010;696(2):114-21. doi: 10.1016/j.mrgentox.2009.12.018.
76. Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, 
McClain C, et al. Molecular mechanisms of acrolein toxicity: 
relevance to human disease. Toxicol Sci. 2015;143(2):242-55. 
doi: 10.1093/toxsci/kfu233.
77. Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, et al. 
Acrolein, a toxicant in cigarette smoke, causes oxidative 
damage and mitochondrial dysfunction in RPE cells: 
protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci. 
2007;48(1):339-48. doi: 10.1167/iovs.06-0248.
78. Alfarhan M, Jafari E, Narayanan SP. Acrolein: a potential 
mediator of oxidative damage in diabetic retinopathy. 
Biomolecules. 2020;10(11):1579. doi: 10.3390/
biom10111579.