1. Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu
MG, et al. Positive aspects of oxidative stress at different
levels of the human body: a review. Antioxidants (Basel).
2022;11(3):572. doi: 10.3390/antiox11030572.
2. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G,
Gonelli A, et al. Oxidative stress: role of physical exercise and
antioxidant nutraceuticals in adulthood and aging. Oncotarget.
2018;9(24):17181-98. doi: 10.18632/oncotarget.24729.
3. Ahmad G, Almasry M, Dhillon AS, Abuayyash MM,
Kothandaraman N, Cakar Z. Overview and sources of
reactive oxygen species (ROS) in the reproductive system.
In: Agarwal A, Sharma R, Gupta S, Harlev A, Ahmad G, du
Plessis SS, et al, eds. Oxidative Stress in Human Reproduction:
Shedding Light on a Complicated Phenomenon. Cham:
Springer International Publishing; 2017. p. 1-16. doi:
10.1007/978-3-319-48427-3_1.
4. García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz
EG. The role of oxidative stress in physiopathology and
pharmacological treatment with pro- and antioxidant
properties in chronic diseases. Oxid Med Cell Longev.
2020;2020:2082145. doi: 10.1155/2020/2082145.
5. Weidinger A, Kozlov AV. Biological activities of reactive
oxygen and nitrogen species: oxidative stress versus signal
transduction. Biomolecules. 2015;5(2):472-84. doi: 10.3390/
biom5020472.
6. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L,
Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants:
back and forth in the pathophysiology of chronic diseases.
Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694 .
7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants
in disease and health. Int J Biomed Sci. 2008;4(2):89-96.
8. Forman HJ, Zhang H. Targeting oxidative stress in disease:
promise and limitations of antioxidant therapy. Nat Rev Drug
Discov. 2021;20(9):689-709. doi: 10.1038/s41573-021-
00233-1.
9. Salmon TB, Evert BA, Song B, Doetsch PW. Biological
consequences of oxidative stress-induced DNA damage
in Saccharomyces cerevisiae. Nucleic Acids Res.
2004;32(12):3712-23. doi: 10.1093/nar/gkh696.
10. Finaud J, Lac G, Filaire E. Oxidative stress: relationship with
exercise and training. Sports Med. 2006;36(4):327-58. doi:
10.2165/00007256-200636040-00004.
11. Reczek CR, Chandel NS. ROS-dependent signal transduction.
Curr Opin Cell Biol. 2015;33:8-13. doi: 10.1016/j.
ceb.2014.09.010.
12. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev
Biochem. 2017;86:715-48. doi: 10.1146/annurevbiochem-061516-045037.
13. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O.
Oxidative stress and antioxidant defense. World Allergy Organ
J. 2012;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613.
14. Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernández YL,
Hernández-Cruz EY, Pedraza-Chaverri J. RONS and oxidative
stress: an overview of basic concepts. Oxygen. 2022; 2(4):437-
478. doi: 10.3390/oxygen2040030.
15. Al-Gubory KH. Environmental factors, oxidative stress,
and adverse developmental outcomes. In: Laher I, ed.
Systems Biology of Free Radicals and Antioxidants.
Berlin, Heidelberg: Springer; 2014. p. 581-96. doi:10.1007/978-3-642-30018-9_38.
16. Gupta PC. The public health impact of tobacco. Curr Sci.
2001;81(5):475-81.
17. Golbidi S, Li H, Laher I. Oxidative stress: a unifying
mechanism for cell damage induced by noise, (water-pipe)
smoking, and emotional stress-therapeutic strategies targeting
redox imbalance. Antioxid Redox Signal. 2018;28(9):741-59.
doi: 10.1089/ars.2017.7257.
18. Taati B, Arazi H, Suzuki K. Oxidative stress and inflammation
induced by waterpipe tobacco smoking despite possible
protective effects of exercise training: a review of the
literature. Antioxidants (Basel). 2020;9(9):777. doi: 10.3390/
antiox9090777.
19. Badran M, Laher I. Waterpipe (shisha, hookah) smoking,
oxidative stress and hidden disease potential. Redox Biol.
2020;34:101455. doi: 10.1016/j.redox.2020.101455.
20. Darawshy F, Abu Rmeileh A, Kuint R, Berkman N. Waterpipe
smoking: a review of pulmonary and health effects. Eur Respir
Rev. 2021;30(160):200374. doi: 10.1183/16000617.0374-
2020.
21. Al-Numair K, Barber-Heidal K, Al-Assaf A, El-Desoky G.
Water-pipe (shisha) smoking influences total antioxidant
capacity and oxidative stress of healthy Saudi males. J Food
Agric Environ. 2007;5(3-4):17-22.
22. Knishkowy B, Amitai Y. Water-pipe (narghile) smoking: an
emerging health risk behavior. Pediatrics. 2005;116(1):e113-
9. doi: 10.1542/peds.2004-2173.
23. Jaccard G, Tafin Djoko D, Korneliou A, Belushkin M. Analysis
of waterpipe aerosol constituents in accordance with the ISO
standard 22486. Toxicol Rep. 2020;7:1344-9. doi: 10.1016/j.
toxrep.2020.10.007.
24. Shihadeh A, Schubert J, Klaiany J, El Sabban M, Luch A, Saliba
NA. Toxicant content, physical properties and biological
activity of waterpipe tobacco smoke and its tobacco-free
alternatives. Tob Control. 2015;24(Suppl 1):i22-30. doi:
10.1136/tobaccocontrol-2014-051907.
25. Akl EA, Gaddam S, Gunukula SK, Honeine R, Jaoude PA, Irani J.
The effects of waterpipe tobacco smoking on health outcomes:
a systematic review. Int J Epidemiol. 2010;39(3):834-57. doi:
10.1093/ije/dyq002.
26. Al-Belasy FA. The relationship of “shisha” (water pipe)
smoking to postextraction dry socket. J Oral Maxillofac Surg.
2004;62(1):10-4. doi: 10.1016/j.joms.2002.11.001.
27. Tamim H, Yunis KA, Chemaitelly H, Alameh M, Nassar
AH. Effect of narghile and cigarette smoking on newborn
birthweight. BJOG. 2008;115(1):91-7. doi: 10.1111/j.1471-
0528.2007.01568.x.
28. Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg
T, Shihadeh A. Acute exposure to waterpipe tobacco smoke
induces changes in the oxidative and inflammatory markers
in mouse lung. Inhal Toxicol. 2012;24(10):667-75. doi:
10.3109/08958378.2012.710918.
29. Nemmar A, Yuvaraju P, Beegam S, John A, Raza H, Ali BH.
Cardiovascular effects of nose-only water-pipe smoking
exposure in mice. Am J Physiol Heart Circ Physiol.
2013;305(5):H740-6. doi: 10.1152/ajpheart.00200.2013.
30. Nemmar A, Yuvaraju P, Beegam S, Ali BH. Short-term noseonly water-pipe (shisha) smoking exposure accelerates
coagulation and causes cardiac inflammation and oxidative
stress in mice. Cell Physiol Biochem. 2015;35(2):829-40. doi:
10.1159/000369741.
31. Alsaad AM, Al-Arifi MN, Maayah ZH, Attafi IM, Alanazi FE,
Belali OM, et al. Genotoxic impact of long-term cigarette and
waterpipe smoking on DNA damage and oxidative stress in
healthy subjects. Toxicol Mech Methods. 2019;29(2):119-27.
doi: 10.1080/15376516.2018.1528650.
32. Arazi H, Taati B, Rafati Sajedi F, Suzuki K. Salivary antioxidants
status following progressive aerobic exercise: what are the
differences between waterpipe smokers and non-smokers?
Antioxidants (Basel). 2019;8(10):418. doi: 10.3390/
antiox8100418.
33. Ibrahim HM, Waziri BI, Aliyu A, Atiku MK. Effect of shisha
(water-pipe) smoking on serum lipid profile and antioxidant
vitamins among smokers in Kano metropolis. SAR J Med
Biochem. 2022;3(3):58-64. doi: 10.36346/sarjmb.2022.
v03i03.005.
34. Rababa’h AM, Sultan BB, Alzoubi KH, Khabour OF, Ababneh
MA. Exposure to waterpipe smoke induces renal functional
and oxidative biomarkers variations in mice. Inhal Toxicol.
2016;28(11):508-13. doi: 10.1080/08958378.2016.1210703.
35. Al-Sawalha NA, Migdadi AM, Alzoubi KH, Khabour OF,
Qinna NA. Effect of waterpipe tobacco smoking on airway
inflammation in murine model of asthma. Inhal Toxicol.
2017;29(2):46-52. doi: 10.1080/08958378.2017.1280105.
36. Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin
J, et al. Nose-only water-pipe smoking effects on airway
resistance, inflammation, and oxidative stress in mice. J
Appl Physiol (1985). 2013;115(9):1316-23. doi: 10.1152/
japplphysiol.00194.2013.
37. Charab MA, Abouzeinab NS, Moustafa ME. The protective
effect of selenium on oxidative stress induced by waterpipe
(narghile) smoke in lungs and liver of mice. Biol Trace Elem
Res. 2016;174(2):392-401. doi: 10.1007/s12011-016-0737-9.
38. Jebai R, Ebrahimi Kalan M, Vargas-Rivera M, Osibogun
O, Li W, Gautam P, et al. Markers of oxidative stress and
toxicant exposure among young waterpipe smokers in the
USA. Environ Sci Pollut Res Int. 2021;28(21):26677-83. doi:
10.1007/s11356-021-12520-w.
39. Khan NA, Lawyer G, McDonough S, Wang Q, Kassem NO, KasPetrus F, et al. Systemic biomarkers of inflammation, oxidative
stress and tissue injury and repair among waterpipe, cigarette
and dual tobacco smokers. Tob Control. 2020;29(Suppl
2):s102-9. doi: 10.1136/tobaccocontrol-2019-054958.
40. Al-Sawalha NA, Alzoubi KH, Khabour OF, Alyacoub W,
Almahmood Y. Effect of waterpipe tobacco smoke exposure
during lactation on learning and memory of offspring rats: role
of oxidative stress. Life Sci. 2019;227:58-63. doi: 10.1016/j.
lfs.2019.04.049.
41. Al-Sawalha NA, Almahmmod YM, Alzoubi KH, Khabour OF,
Alyacoub WN. Influence of prenatal waterpipe tobacco smoke
exposure on reproductive hormones and oxidative stress of
adult male offspring rats. Andrologia. 2019;51(8):e13318. doi:
10.1111/and.13318.
42. Masjedi MR, Dobaradaran S, Keshmiri S, Taghizadeh F,
Arfaeinia H, Fanaei F, et al. Use of toenail-bounded heavy
metals to characterize occupational exposure and oxidative
stress in workers of waterpipe/cigarette cafés. Environ
Geochem Health. 2021;43(5):1783-97. doi: 10.1007/s10653-
020-00751-8.
43. Khan NA, Sundar IK, Rahman I. Strain- and sex-dependent
pulmonary toxicity of waterpipe smoke in mouse. Physiol
Rep. 2018;6(3):e13579. doi: 10.14814/phy2.13579.
44. Alomari MA, Alzoubi KH, Khabour OF. Differences in
oxidative stress profile in adolescents smoking waterpipe
versus cigarettes: the Irbid TRY Project. Physiol Rep.
2020;8(14):e14512. doi: 10.14814/phy2.14512.
45. Potts DA, Daniels JS. Where there’s smoke there must
be ire! Nicotine addiction treatment: a review. Mo Med.
2014;111(1):80-1.
46. Aboaziza E, Eissenberg T. Waterpipe tobacco smoking: what
is the evidence that it supports nicotine/tobacco dependence?
Tob Control. 2015;24(Suppl 1):i44-53. doi: 10.1136/tobaccocontrol-2014-051910.
47. Murphy SE. Biochemistry of nicotine metabolism and its
relevance to lung cancer. J Biol Chem. 2021;296:100722. doi:
10.1016/j.jbc.2021.100722.
48. Hukkanen J, Jacob P, 3rd, Benowitz NL. Metabolism and
disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79-
115. doi: 10.1124/pr.57.1.3.
49. Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg
A. Harmful effects of nicotine. Indian J Med Paediatr Oncol.
2015;36(1):24-31. doi: 10.4103/0971-5851.151771.
50. Wang LW, He EY, Ghosh D, Day RO, Jones GR, Subbiah
RN, et al. Severe carbon monoxide poisoning from
waterpipe smoking: a public health concern. Med J Aust.
2015;202(8):446-7. doi: 10.5694/mja14.01264.
51. Henning RJ, Johnson GT, Coyle JP, Harbison RD. Acrolein can
cause cardiovascular disease: a review. Cardiovasc Toxicol.
2017;17(3):227-36. doi: 10.1007/s12012-016-9396-5.
52. Minna JD. Nicotine exposure and bronchial epithelial cell
nicotinic acetylcholine receptor expression in the pathogenesis
of lung cancer. J Clin Invest. 2003;111(1):31-3. doi: 10.1172/
jci17492.
53. Cattaneo MG, D’Atri F, Vicentini LM. Mechanisms of mitogenactivated protein kinase activation by nicotine in small-cell
lung carcinoma cells. Biochem J. 1997;328(Pt 2):499-503.
doi: 10.1042/bj3280499.
54. Barr J, Sharma CS, Sarkar S, Wise K, Dong L, Periyakaruppan
A, et al. Nicotine induces oxidative stress and activates
nuclear transcription factor kappa B in rat mesencephalic
cells. Mol Cell Biochem. 2007;297(1-2):93-9. doi: 10.1007/
s11010-006-9333-1.
55. Husain K, Scott BR, Reddy SK, Somani SM. Chronic ethanol
and nicotine interaction on rat tissue antioxidant defense
system. Alcohol. 2001;25(2):89-97. doi: 10.1016/s0741-
8329(01)00176-8.
56. Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings
J, Butler K, et al. Cigarette smoke alters chromatin remodeling
and induces proinflammatory genes in rat lungs. Am J Respir
Cell Mol Biol. 2004;31(6):633-42. doi: 10.1165/rcmb.2004-
0006OC.
57. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, et al. Nicotine
promotes atherosclerosis via ROS-NLRP3-mediated
endothelial cell pyroptosis. Cell Death Dis. 2018;9(2):171.
doi: 10.1038/s41419-017-0257-3.
58. Arany I, Grifoni S, Clark JS, Csongradi E, Maric C, Juncos LA.
Chronic nicotine exposure exacerbates acute renal ischemic
injury. Am J Physiol Renal Physiol. 2011;301(1):F125-33. doi:
10.1152/ajprenal.00041.2011.
59. Arany I, Clark J, Reed DK, Juncos LA. Chronic nicotine
exposure augments renal oxidative stress and injury through
transcriptional activation of p66shc. Nephrol Dial Transplant.
2013;28(6):1417-25. doi: 10.1093/ndt/gfs596.
60. Piantadosi CA. Carbon monoxide, reactive oxygen signaling,
and oxidative stress. Free Radic Biol Med. 2008;45(5):562-9.
doi: 10.1016/j.freeradbiomed.2008.05.013.
61. Akyol S, Erdogan S, Idiz N, Celik S, Kaya M, Ucar F, et al.
The role of reactive oxygen species and oxidative stress in
carbon monoxide toxicity: an in-depth analysis. Redox Rep.
2014;19(5):180-9. doi: 10.1179/1351000214y.0000000094.
62. von Rappard J, Schönenberger M, Bärlocher L. Carbon
monoxide poisoning following use of a water pipe/hookah.
Dtsch Arztebl Int. 2014;111(40):674-9. doi: 10.3238/
arztebl.2014.0674.
63. Harris GK, Shi X. Signaling by carcinogenic metals and metalinduced reactive oxygen species. Mutat Res. 2003;533(1-
2):183-200. doi: 10.1016/j.mrfmmm.2003.08.025.
64. Leonard S, Wang S, Zang L, Castranova V, Vallyathan V, Shi X.
Role of molecular oxygen in the generation of hydroxyl and
superoxide anion radicals during enzymatic Cr(VI) reduction
and its implication to Cr(VI)-induced carcinogenesis. J Environ
Pathol Toxicol Oncol. 2000;19(1-2):49-60.
65. Stohs SJ, Bagchi D, Hassoun E, Bagchi M. Oxidative
mechanisms in the toxicity of chromium and cadmium ions. J
Environ Pathol Toxicol Oncol. 2000;19(3):201-13.
66. Yadav IC, Devi NL. Biomass burning, regional air quality,
and climate change. In: Nriagu J, ed. Encyclopedia of
Environmental Health. 2nd ed. Oxford: Elsevier; 2019. p. 386-
91. doi: 10.1016/b978-0-12-409548-9.11022-x.
67. El Morabet R. Effects of outdoor air pollution on human health.
In: Nriagu J, ed. Encyclopedia of Environmental Health. 2nd
ed. Oxford: Elsevier; 2019. p. 278-86. doi: 10.1016/b978-0-
12-409548-9.11509-x.
68. Aztatzi-Aguilar O, Valdés-Arzate A, Debray-García Y,
Calderón-Aranda E, Uribe-Ramirez M, Acosta-Saavedra L, et
al. Exposure to ambient particulate matter induces oxidative
stress in lung and aorta in a size- and time-dependent manner
in rats. Toxicol Res Appl. 2018;2:2397847318794859. doi:
10.1177/2397847318794859.
69. Braun M, Koger F, Klingelhöfer D, Müller R, Groneberg DA.
Particulate matter emissions of four different cigarette types
of one popular brand: influence of tobacco strength and
additives. Int J Environ Res Public Health. 2019;16(2):263.
doi: 10.3390/ijerph16020263.
70. Fiala SC, Morris DS, Pawlak RL. Measuring indoor air quality
of hookah lounges. Am J Public Health. 2012;102(11):2043-5.
doi: 10.2105/ajph.2012.300751.
71. Haberzettl P, Bhatnagar A, Conklin DJ. Particulate matter
and oxidative stress–pulmonary and cardiovascular targets
and consequences. In: Laher I, ed. Systems Biology of Free
Radicals and Antioxidants. Berlin: Springer; 2014. p. 1557-86.
doi: 10.1007/978-3-642-30018-9_120.
72. Borm PJ, Kelly F, Künzli N, Schins RP, Donaldson K. Oxidant
generation by particulate matter: from biologically effective
dose to a promising, novel metric. Occup Environ Med.
2007;64(2):73-4. doi: 10.1136/oem.2006.029090.
73. Ghio AJ, Carraway MS, Madden MC. Composition of air
pollution particles and oxidative stress in cells, tissues,
and living systems. J Toxicol Environ Health B Crit Rev.
2012;15(1):1-21. doi: 10.1080/10937404.2012.632359.
74. Kelly FJ. Oxidative stress: its role in air pollution and adverse
health effects. Occup Environ Med. 2003;60(8):612-6. doi:
10.1136/oem.60.8.612.
75. Hanzalova K, Rossner P Jr, Sram RJ. Oxidative damage induced
by carcinogenic polycyclic aromatic hydrocarbons and
organic extracts from urban air particulate matter. Mutat Res.
2010;696(2):114-21. doi: 10.1016/j.mrgentox.2009.12.018.
76. Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S,
McClain C, et al. Molecular mechanisms of acrolein toxicity:
relevance to human disease. Toxicol Sci. 2015;143(2):242-55.
doi: 10.1093/toxsci/kfu233.
77. Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, et al.
Acrolein, a toxicant in cigarette smoke, causes oxidative
damage and mitochondrial dysfunction in RPE cells:
protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci.
2007;48(1):339-48. doi: 10.1167/iovs.06-0248.
78. Alfarhan M, Jafari E, Narayanan SP. Acrolein: a potential
mediator of oxidative damage in diabetic retinopathy.
Biomolecules. 2020;10(11):1579. doi: 10.3390/
biom10111579.