Potential Involvement of Apelin/APJ System in Addiction and Neuroprotection Against Drugs of Abuse

Document Type : Review Article(s)

Authors

Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran

10.34172/ahj.1479

Abstract

Addiction, characterized by compulsive drug-seeking behavior and impaired self-control, remains a significant public health 
concern. Understanding the neurobiology of addiction is crucial for identifying novel therapeutic targets and further developing 
effective treatments. Recently, the apelin/APJ system, an emerging signaling pathway, has attracted attention for its involvement 
in various neuropsychiatric disorders. The cross-talk between the apelin/APJ system and hypothalamic mu opioid signaling, as 
well as its heterodimerization with kappa opioid receptors (KORs), supports the potential relevance of this system to addiction. 
Moreover, several protective effects of apelin against various addictive substances, including methamphetamine, morphine, and 
alcohol, underscore the need for further investigation into its role in substance use disorder. Understanding the contribution 
of the apelin/APJ system in addiction may offer valuable insights into the underlying neurobiology and pave the way for 
novel therapeutic interventions in substance use disorders. This review provides a concise overview of the apelin/APJ system, 
emphasizing its physiological roles and highlighting its relevance to addiction research.

Highlights

Reza Saboori Amleshi: (Google Scholar) (PubMed)

Masoud Soltaninejad: (Google Scholar) (PubMed)

Mehran Ilaghi: (Google Scholar) (PubMed)

Keywords


1. Koob GF, Volkow ND. Neurobiology of addiction: a 
neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760-73. 
doi: 10.1016/s2215-0366(16)00104-8.
2. Koob GF, Volkow ND. Neurocircuitry of addiction. 
Neuropsychopharmacology. 2010;35(1):217-38. doi: 
10.1038/npp.2009.110.
3. Belzeaux R, Lalanne L, Kieffer BL, Lutz PE. Focusing on 
the opioid system for addiction biomarker discovery. 
Trends Mol Med. 2018;24(2):206-20. doi: 10.1016/j.
molmed.2017.12.004.
4. Wise RA, Jordan CJ. Dopamine, behavior, and addiction. 
J Biomed Sci. 2021;28(1):83. doi: 10.1186/s12929-021-
00779-7.
5. Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in 
addiction. Mol Psychiatry. 2003;8(4):373-82. doi: 10.1038/
sj.mp.4001269.
6. Falcão-Pires I, Leite-Moreira AF. Apelin: a novel neurohumoral 
modulator of the cardiovascular system. Pathophysiologic 
importance and potential use as a therapeutic target. Rev Port 
Cardiol. 2005;24(10):1263-76.
7. Gurzu B, Petrescu BC, Costuleanu M, Petrescu G. Interactions 
between apelin and angiotensin II on rat portal vein. J Renin 
Angiotensin Aldosterone Syst. 2006;7(4):212-6. doi: 10.3317/
jraas.2006.040.
8. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, 
Zou MX, et al. Isolation and characterization of a novel 
endogenous peptide ligand for the human APJ receptor. 
Biochem Biophys Res Commun. 1998;251(2):471-6. doi: 
10.1006/bbrc.1998.9489.
9. Charles CJ. Putative role for apelin in pressure/volume 
homeostasis and cardiovascular disease. Cardiovasc 
Hematol Agents Med Chem. 2007;5(1):1-10. doi: 
10.2174/187152507779315804.
10. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF. The 
apelinergic system: the role played in human physiology 
and pathology and potential therapeutic applications. 
Arq Bras Cardiol. 2008;90(5):343-9. doi: 10.1590/s0066-
782x2008000500012.
11. Zhen EY, Higgs RE, Gutierrez JA. Pyroglutamyl apelin-13 
identified as the major apelin isoform in human plasma. Anal 
Biochem. 2013;442(1):1-9. doi: 10.1016/j.ab.2013.07.006.
12. Kleinz MJ, Davenport AP. Emerging roles of apelin in biology 
and medicine. Pharmacol Ther. 2005;107(2):198-211. doi: 
10.1016/j.pharmthera.2005.04.001.
13. Wang G, Anini Y, Wei W, Qi X, O’Carroll AM, Mochizuki 
T, et al. Apelin, a new enteric peptide: localization in the 
gastrointestinal tract, ontogeny, and stimulation of gastric cell 
proliferation and of cholecystokinin secretion. Endocrinology. 
2004;145(3):1342-8. doi: 10.1210/en.2003-1116.
14. Folino A, Montarolo PG, Samaja M, Rastaldo R. Effects 
of apelin on the cardiovascular system. Heart Fail Rev. 
2015;20(4):505-18. doi: 10.1007/s10741-015-9475-x.
15. Masri B, van den Berghe L, Sorli C, Knibiehler B, Audigier 
Y. [Apelin signalisation and vascular physiopathology]. J 
Soc Biol. 2009;203(2):171-9. doi: 10.1051/jbio/2009021. 
[French].
16. Nishida M, Hamaoka K. The apelin-APJ system: its role in 
renal physiology and potential therapeutic applications for 
renal disease. OA Nephrol. 2013;1(7):1-5.
17. Hu G, Wang Z, Zhang R, Sun W, Chen X. The role of 
apelin/apelin receptor in energy metabolism and water 
homeostasis: a comprehensive narrative review. Front 
Physiol. 2021;12:632886. doi: 10.3389/fphys.2021.632886.
18. Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging 
therapeutic target for neurological diseases. Mol Biol Rep. 
2023;50(2):1639-53. doi: 10.1007/s11033-022-08075-9.
19. Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, et al. 
Neuroprotective roles of apelin-13 in neurological diseases. 
Neurochem Res. 2023;48(6):1648-62. doi: 10.1007/s11064-
023-03869-0.
20. Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd 
Z. Apelin-13 protects the brain against ischemic reperfusion 
injury and cerebral edema in a transient model of focal 
cerebral ischemia. J Mol Neurosci. 2012;48(1):201-8. doi: 
10.1007/s12031-012-9808-3.
21. Zhou JX, Shuai NN, Wang B, Jin X, Kuang X, Tian SW. 
Neuroprotective gain of apelin/APJ system. Neuropeptides. 
2021;87:102131. doi: 10.1016/j.npep.2021.102131.
22. Pouresmaeili-Babaki E, Esmaeili-Mahani S, Abbasnejad M, 
Ravan H. Protective effect of neuropeptide apelin-13 on 
6-hydroxydopamine-induced neurotoxicity in SH-SY5Y 
dopaminergic cells: involvement of its antioxidant and 
antiapoptotic properties. Rejuvenation Res. 2018;21(2):162-
7. doi: 10.1089/rej.2017.1951. 23. Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani 
S. Apelin-13 attenuates motor impairments and prevents 
the changes in synaptic plasticity-related molecules in the 
striatum of Parkinsonism rats. Peptides. 2019;117:170091. 
doi: 10.1016/j.peptides.2019.05.003.
24. Haghparast E, Esmaeili-Mahani S, Abbasnejad M, 
Sheibani V. Apelin-13 ameliorates cognitive impairments 
in 6-hydroxydopamine-induced substantia nigra lesion 
in rats. Neuropeptides. 2018;68:28-35. doi: 10.1016/j.
npep.2018.01.001.
25. Aminyavari S, Zahmatkesh M, Farahmandfar M, 
Khodagholi F, Dargahi L, Zarrindast MR. Protective role 
of apelin-13 on amyloid β25-35-induced memory deficit; 
involvement of autophagy and apoptosis process. Prog 
Neuropsychopharmacol Biol Psychiatry. 2019;89:322-34. 
doi: 10.1016/j.pnpbp.2018.10.005.
26. Masoumi J, Abbasloui M, Parvan R, Mohammadnejad 
D, Pavon-Djavid G, Barzegari A, et al. Apelin, a 
promising target for Alzheimer disease prevention and 
treatment. Neuropeptides. 2018;70:76-86. doi: 10.1016/j.
npep.2018.05.008.
27. Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C. 
Distribution of apelin-synthesizing neurons in the adult rat 
brain. Neuroscience. 2002;113(3):653-62. doi: 10.1016/
s0306-4522(02)00192-6.
28. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, et 
al. Characterization of apelin, the ligand for the APJ receptor. 
J Neurochem. 2000;74(1):34-41. doi: 10.1046/j.1471-
4159.2000.0740034.x.
29. Dai TT, Wang B, Xiao ZY, You Y, Tian SW. Apelin-13 
upregulates BDNF against chronic stress-induced depressionlike phenotypes by ameliorating HPA axis and hippocampal 
glucocorticoid receptor dysfunctions. Neuroscience. 
2018;390:151-9. doi: 10.1016/j.neuroscience.2018.08.018.
30. Tian SW, Xu F, Gui SJ. Apelin-13 reverses memory 
impairment and depression-like behavior in chronic social 
defeat stressed rats. Peptides. 2018;108:1-6. doi: 10.1016/j.
peptides.2018.08.009.
31. Foroughi K, Khaksari M, Rahmati M, Bitaraf FS, Shayannia 
A. Apelin-13 protects PC12 cells against methamphetamineinduced oxidative stress, autophagy and apoptosis. 
Neurochem Res. 2019;44(9):2103-12. doi: 10.1007/s11064-
019-02847-9.
32. Yildiz I, Çimen YA, Eroğlu Güneş C, Özkürkçüler A, Kurar E, 
Kutlu S. Effect of morphine dependency on apelinergic system 
in rat hippocampus. Acta Physiol. 2022;234(Suppl 724):45.
33. Zarrinkalam E, Heidarianpour A. The effect of different training 
modes on serum apelin and pain threshold in morphinedependent rats. Avicenna J Neuro Psycho Physiology. 
2015;2(3):60-5. doi: 10.17795/ajnpp-34440.
34. Mohseni F, Khaksari M, Rafaiee R, Rahimi K, Norouzi P, 
Garmabi B. Apelin-13 improves anxiety and cognition via 
hippocampal increases BDNF expression and reduction cell 
death in neonatal alcohol exposed rats. Int J Pept Res Ther. 
2021;27(2):1351-62. doi: 10.1007/s10989-021-10173-4.
35. Mohseni F, Garmabi B, Khaksari M. Apelin-13 attenuates 
spatial memory impairment by anti-oxidative, antiapoptosis, and anti-inflammatory mechanism against ethanol 
neurotoxicity in the neonatal rat hippocampus. Neuropeptides. 
2021;87:102130. doi: 10.1016/j.npep.2021.102130.
36. Tavanai A, Asadikaram G, Masoumi M. Opium addiction 
is associated with increased damage to cardiomyocytes: 
protective roles played by apelins. Iran Heart J. 2020;21(3):6-
14.
37. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? 
Nat Rev Neurosci. 2018;19(8):499-514. doi: 10.1038/
s41583-018-0028-x.
38. Stuber GD, Wise RA. Lateral hypothalamic circuits for 
feeding and reward. Nat Neurosci. 2016;19(2):198-205. doi: 
10.1038/nn.4220.
39. Tyree SM, de Lecea L. Lateral hypothalamic control of the 
ventral tegmental area: reward evaluation and the driving of 
motivated behavior. Front Syst Neurosci. 2017;11:50. doi: 
10.3389/fnsys.2017.00050.
40. Nieh EH, Vander Weele CM, Matthews GA, Presbrey 
KN, Wichmann R, Leppla CA, et al. Inhibitory input from 
the lateral hypothalamus to the ventral tegmental area 
disinhibits dopamine neurons and promotes behavioral 
activation. Neuron. 2016;90(6):1286-98. doi: 10.1016/j.
neuron.2016.04.035.
41. Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, 
nucleus accumbens, and ventral pallidum roles in eating 
and hunger: interactions between homeostatic and reward 
circuitry. Front Syst Neurosci. 2015;9:90. doi: 10.3389/
fnsys.2015.00090.
42. DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic 
neuropeptides in reward and drug addiction. Life Sci. 
2003;73(6):759-68. doi: 10.1016/s0024-3205(03)00408-9.
43. Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G. 
Lateral hypothalamic orexin neurons are critically involved 
in learning to associate an environment with morphine 
reward. Behav Brain Res. 2007;183(1):43-51. doi: 10.1016/j.
bbr.2007.05.025.
44. Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, 
Massi L, Tahsili-Fahadan P, et al. Lateral hypothalamic 
orexin/hypocretin neurons: a role in reward-seeking and 
addiction. Brain Res. 2010;1314:74-90. doi: 10.1016/j.
brainres.2009.09.106.
45. Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer 
BL, Maldonado R. Motivational effects of cannabinoids 
are mediated by mu-opioid and kappa-opioid receptors. 
J Neurosci. 2002;22(3):1146-54. doi: 10.1523/
jneurosci.22-03-01146.2002.
46. Berrendero F, Kieffer BL, Maldonado R. Attenuation of 
nicotine-induced antinociception, rewarding effects, 
and dependence in mu-opioid receptor knock-out 
mice. J Neurosci. 2002;22(24):10935-40. doi: 10.1523/
jneurosci.22-24-10935.2002.
47. Berrettini W. Alcohol addiction and the mu-opioid receptor. 
Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:228-
33. doi: 10.1016/j.pnpbp.2015.07.011.
48. Zubieta JK, Gorelick DA, Stauffer R, Ravert HT, Dannals RF, 
Frost JJ. Increased mu opioid receptor binding detected by 
PET in cocaine-dependent men is associated with cocaine 
craving. Nat Med. 1996;2(11):1225-9. doi: 10.1038/nm1196-
1225.
49. Moles A, Kieffer BL, D’Amato FR. Deficit in attachment 
behavior in mice lacking the mu-opioid receptor gene. Science. 
2004;304(5679):1983-6. doi: 10.1126/science.1095943.
50. Befort K, Filliol D, Darcq E, Ghate A, Matifas A, Lardenois A, 
et al. Gene expression is altered in the lateral hypothalamus 
upon activation of the mu opioid receptor. Ann N Y Acad Sci. 
2008;1129:175-84. doi: 10.1196/annals.1417.028.
51. Mollereau C, Roumy M, Zajac JM. Opioid-modulating 
peptides: mechanisms of action. Curr Top Med Chem. 
2005;5(3):341-55. doi: 10.2174/1568026053544515.
52. Mansour A, Fox CA, Meng F, Akil H, Watson SJ. Kappa 1 
receptor mRNA distribution in the rat CNS: comparison to 
kappa receptor binding and prodynorphin mRNA. Mol Cell 
Neurosci. 1994;5(2):124-44. doi: 10.1006/mcne.1994.1015.
53. Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κopioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci. 2012;69(6):857-96. doi: 10.1007/s00018-
011-0844-x.
54. Glick SD, Maisonneuve IM, Raucci J, Archer S. Kappa opioid 
inhibition of morphine and cocaine self-administration in 
rats. Brain Res. 1995;681(1-2):147-52. doi: 10.1016/0006-
8993(95)00306-b.
55. Schenk S, Partridge B, Shippenberg TS. U69593, a kappa-opioid 
agonist, decreases cocaine self-administration and decreases 
cocaine-produced drug-seeking. Psychopharmacology (Berl). 
1999;144(4):339-46. doi: 10.1007/s002130051016.
56. Negus SS, Mello NK, Portoghese PS, Lin CE. Effects of kappa 
opioids on cocaine self-administration by rhesus monkeys. J 
Pharmacol Exp Ther. 1997;282(1):44-55.
57. Khan MI, Sawyer BJ, Akins NS, Le HV. A systematic review 
on the kappa opioid receptor and its ligands: new directions 
for the treatment of pain, anxiety, depression, and drug 
abuse. Eur J Med Chem. 2022;243:114785. doi: 10.1016/j.
ejmech.2022.114785.
58. Li Y, Chen J, Bai B, Du H, Liu Y, Liu H. Heterodimerization 
of human apelin and kappa opioid receptors: roles in 
signal transduction. Cell Signal. 2012;24(5):991-1001. doi: 
10.1016/j.cellsig.2011.12.012.
59. Ilaghi M, Soltanizadeh A, Amiri S, Kohlmeier KA, Shabani 
M. The apelin/APJ signaling system and cytoprotection: role 
of its cross-talk with kappa opioid receptor. Eur J Pharmacol. 
2022;936:175353. doi: 10.1016/j.ejphar.2022.175353.
60. Lv S, Zhang X, Feng Y, Zhou Y, Cui B, Yang Y, et al. Intravenous 
administration of pyroglutamyl apelin-13 alleviates murine 
inflammatory pain via the kappa opioid receptor. Front 
Neurosci. 2020;14:929. doi: 10.3389/fnins.2020.00929.
61. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, 
et al. Mu, delta, and kappa opioid receptor mRNA expression 
in the rat CNS: an in-situ hybridization study. J Comp Neurol. 
1994;350(3):412-38. doi: 10.1002/cne.903500307.
62. Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, 
Winborn KY, et al. Pharmacological and immunohistochemical 
characterization of the APJ receptor and its endogenous 
ligand apelin. J Neurochem. 2003;84(5):1162-72. doi: 
10.1046/j.1471-4159.2003.01587.x.