Validation of Gambling Related Cognitions Scale-Iranian Version (GRCS-IR)

Document Type : Original Article

Authors

1 Department of Clinical Psychology, Islamic Azad University, Qods Branch, Tehran, Iran

2 Allameh Tabataba’i University, Tehran, Iran

3 Sociology of Social Groups, Islamic Azad University, Central Tehran Branch, Tehran, Iran

4 Islamic Azad University, Qods Branch, Tehran, Iran

10.34172/ahj.2023.1431

Abstract

Background: The change in gambling forms, a wide variety of advertising methods, the access to gambling, as well as the increase 
in participation in online gambling have made it important to know and investigate gambling, particularly as pathological 
gambling leads to psychological and physical damage.
Methods: The present study investigated the factor structure of the Gambling Related Cognitions Scale (GRCS) proposed by Raylu 
and Oei in addiction. The study sample included 574 participants (40.2% male, 59.8% female) between 18 and 56 years of 
age. The instruments used in the present study included the GRCS, the South Oaks Gambling Screen Questionnaire (SOGS), the 
Victorian Gambling Screen (VGS), and the Problem Gambling Severity Index (PGSI). 
Findings: A 5-factor GRCS model provided the best fit to the data, and gambling-related cognitions were a strong predictor of 
disordered gambling among adults. All subscales presented good internal consistency and scalability. The findings showed that 
the total score of the GRCS-IR was significantly different among men and women.
Conclusion: The findings of this study confirmed that the Iranian version of the GRCS-IR is an effective multidimensional 
instrument that accurately measures cognitive distortions related to gambling. Consequently, it can be utilized as a valuable 
tool for assessing GRC (Gambling Related Cognitions) to understand the severity of pathological gambling and has the potential 
capacity to measure treatment outcomes.

Keywords


1. Fortune EE, Goodie AS. The relationship between pathological 
gambling and sensation seeking: the role of subscale scores. 
J Gambl Stud. 2010;26(3):331-46. doi: 10.1007/s10899-009-
9162-8.
2. Okechukwu CE. Role of exercise in the treatment of gambling 
disorder. Nigerian J Exp Clin Biosci. 2019;7(1):50-4. doi: 
10.4103/njecp.njecp_11_19.
3. Po Oei T, Lin J, Raylu N. The relationship between 
gambling cognitions, psychological states, and gambling: 
a cross-cultural study of Chinese and Caucasians in 
Australia. J Cross Cult Psychol. 2008;39(2):147-61. doi: 
10.1177/0022022107312587.
4. Rockström J, Schellnhuber HJ, Hoskins B, Ramanathan 
V, Schlosser P, Brasseur GP, et al. The world’s biggest 
gamble. Earths Future. 2016;4(10):465-70. doi: 
10.1002/2016ef000392.
5. Abbott MW, Binde P, Clark L, Hodgins DC, Johnson MR, 
Manitowabi D, et al. Conceptual Framework of Harmful 
Gambling. Guelph, Ontario: Gambling Research Exchange 
Ontario (GREO); 2018.
6. Hilbrecht M, Baxter D, Abbott M, Binde P, Clark L, Hodgins 
DC, et al. The Conceptual Framework of Harmful Gambling: a 
revised framework for understanding gambling harm. J Behav 
Addict. 2020;9(2):190-205. doi: 10.1556/2006.2020.00024.
7. American Psychiatric Association (APA). Diagnostic and 
Statistical Manual of Mental Disorders, Text Revision (DSMIV-TR®). APA; 2010.
8. Abbott MW. The changing epidemiology of gambling disorder 
and gambling-related harm: public health implications. Public 
Health. 2020;184:41-5. doi: 10.1016/j.puhe.2020.04.003.
9. Greer N, Rockloff M, Hing N, Browne M, King DL. Skin 
gambling contributes to gambling problems and harm after 
controlling for other forms of traditional gambling. J Gambl 
Stud. 2023;39(1):225-47. doi: 10.1007/s10899-022-10111-z.
10. Sharman S, Butler K, Roberts A. Psychosocial risk factors in 
disordered gambling: a descriptive systematic overview of 
vulnerable populations. Addict Behav. 2019;99:106071. doi: 
10.1016/j.addbeh.2019.106071.
11. Browne M, Langham E, Rawat V, Greer N, Li E, Rose J, et 
al. Assessing Gambling-Related Harm in Victoria: A Public 
Health Perspective. Victorian Responsible Gambling 
Foundation; 2016.
12. Estévez A, Jáuregui P, Lopez-Gonzalez H, Mena-Moreno T, 
Lozano-Madrid M, Macia L, et al. The severity of gambling 
and gambling related cognitions as predictors of emotional 
regulation and coping strategies in adolescents. J Gambl Stud. 
2021;37(2):483-95. doi: 10.1007/s10899-020-09953-2.
13. Buen A, Flack M. Predicting problem gambling severity: 
interplay between emotion dysregulation and gamblingrelated cognitions. J Gambl Stud. 2022;38(2):483-98. doi: 
10.1007/s10899-021-10039-w.
14. Raylu N, Oei TP. The Gambling Related Cognitions Scale 
(GRCS): development, confirmatory factor validation and 
psychometric properties. Addiction. 2004;99(6):757-69. doi: 
10.1111/j.1360-0443.2004.00753.x.
15. Gaboury A, Ladouceur R. Erroneous perceptions and 
gambling. J Soc Behav Pers. 1989;4(4):411-20.
16. Brooks GA, Clark L. Associations between loot box use, 
problematic gaming and gambling, and gambling-related 
cognitions. Addict Behav. 2019;96:26-34. doi: 10.1016/j.
addbeh.2019.04.009.
17. Ruiz de Lara CM, Perales JC. Psychobiology of gamblingrelated cognitions in gambling disorder. Curr Opin Behav Sci. 
2020;31:60-8. doi: 10.1016/j.cobeha.2019.11.012.
18. Ledgerwood DM, Dyshniku F, McCarthy JE, Ostojic-Aitkens 
D, Forfitt J, Rumble SC. Gambling-related cognitive distortions 
in residential treatment for gambling disorder. J Gambl Stud. 
2020;36(2):669-83. doi: 10.1007/s10899-019-09895-4.
19. Ruiz de Lara CM, Navas JF, Perales JC. The paradoxical 
relationship between emotion regulation and gamblingrelated cognitive biases. PLoS One. 2019;14(8):e0220668. 
doi: 10.1371/journal.pone.0220668.
20. Gooding P, Tarrier N. A systematic review and meta-analysisof cognitive-behavioural interventions to reduce problem 
gambling: hedging our bets? Behav Res Ther. 2009;47(7):592-
607. doi: 10.1016/j.brat.2009.04.002.
21. Arcan K, Karanci AN. Adaptation study of the Turkish version 
of the Gambling-Related Cognitions Scale (GRCS-T). J Gambl 
Stud. 2015;31(1):211-24. doi: 10.1007/s10899-013-9414-5.
22. Donati MA, Ancona F, Chiesi F, Primi C. Psychometric 
properties of the Gambling Related Cognitions Scale (GRCS) 
in young Italian gamblers. Addict Behav. 2015;45:1-7. doi: 
10.1016/j.addbeh.2015.01.001.
23. Grall-Bronnec M, Bouju G, Sébille-Rivain V, Gorwood 
P, Boutin C, Vénisse JL, et al. A French adaptation of the 
Gambling-Related Cognitions Scale (GRCS): a useful tool for 
assessment of irrational thoughts among gamblers. J Gambl 
Issues. 2012(27):1-21. doi: 10.4309/jgi.2012.27.9.
24. Kale S, Dubelaar C. Assessment of reliability and validity of 
the Gambling Related Cognitions Scale (GRCS). Gambling 
Research: Journal of the National Association for Gambling 
Studies (Australia). 2013;25(1):25-44.
25. Taylor RN, Parker JD, Keefer KV, Kloosterman PH, Summerfeldt 
LJ. Are gambling related cognitions in adolescence 
multidimensional?: Factor structure of the Gambling Related 
Cognitions Scale. J Gambl Stud. 2014;30(2):453-65. doi: 
10.1007/s10899-013-9368-7.
26. Yang Y, Wu D, Wen Y, Lu X, Li M. Psychometric properties of 
the Chinese version of the Gambling Related Cognitions Scale 
in Chinese mainland sample. Addict Behav. 2014;39(1):341-
4. doi: 10.1016/j.addbeh.2013.09.021.
27. Yokomitsu K, Takahashi T, Kanazawa J, Sakano Y. 
Development and validation of the Japanese version of the 
Gambling Related Cognitions Scale (GRCS-J). Asian J Gambl 
Issues Public Health. 2015;5(1):1-11. doi: 10.1186/s40405-
015-0006-4.
28. Smith D, Woodman R, Drummond A, Battersby M. Exploring 
the measurement structure of the Gambling Related 
Cognitions Scale (GRCS) in treatment-seekers: a Bayesian 
structural equation modelling approach. Psychiatry Res. 
2016;237:90-6. doi: 10.1016/j.psychres.2016.02.002.
29. Toneatto T. Cognitive psychopathology of problem 
gambling. Subst Use Misuse. 1999;34(11):1593-604. doi: 
10.3109/10826089909039417.
30. Hahmann TE. Moderate-risk and problem slot machine 
gamblers: a typology of gambling-related cognitions. J Gambl 
Issues. 2016(34):140-55. doi: 10.4309/jgi.2016.34.8.
31. Oei TP, Burrow T. Alcohol expectancy and drinking refusal 
self-efficacy: a test of specificity theory. Addict Behav. 
2000;25(4):499-507. doi: 10.1016/s0306-4603(99)00044-1.
32. Oei TP, Lin J, Raylu N. Validation of the Chinese version of 
the Gambling Related Cognitions Scale (GRCS-C). J Gambl 
Stud. 2007;23(3):309-22. doi: 10.1007/s10899-006-9040-6.
33. Tang CS, Wu AM. Gambling-related cognitive biases 
and pathological gambling among youths, young adults, 
and mature adults in Chinese societies. J Gambl Stud. 
2012;28(1):139-54. doi: 10.1007/s10899-011-9249-x.
34. Stinchfield R. Reliability, validity, and classification accuracy 
of the South Oaks Gambling Screen (SOGS). Addict Behav. 
2002;27(1):1-19. doi: 10.1016/s0306-4603(00)00158-1.
35. Tolchard B, Battersby MW. The Victorian Gambling Screen: 
reliability and validation in a clinical population. J Gambl 
Stud. 2010;26(4):623-38. doi: 10.1007/s10899-009-9172-6.
36. Blaszczynski A, Ladouceur R, Moodie C. The Sydney 
Laval universities gambling screen: preliminary 
data. Addict Res Theory. 2008;16(4):401-11. doi: 
10.1080/16066350701699031.
37. Iliceto P, Fino E, Cammarota C, Giovani E, Petrucci F, 
Desimoni M, et al. Factor structure and psychometric 
properties of the Italian version of the Gambling Related 
Cognitions Scale (GRCS-I). J Gambl Stud. 2015;31(1):225-42. 
doi: 10.1007/s10899-013-9405-6.
38. Bandura A. Social cognitive theory: an agentic perspective. 
Annu Rev Psychol. 2001;52:1-26. doi: 10.1146/annurev.
psych.52.1.1.