Tramadol Treatment Induces Change in Phospho-Cyclic Adenosine Monophosphate Response Element-Binding Protein and Delta and Mu Opioid Receptors within Hippocampus and Amygdala Areas of Rat Brain

Document Type : Original Article

Authors

1 Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran

2 Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Branch, Islamic Azad University, Tehran, Iran

3 Department of Environmental Health Sciences, Florida International University, Florida, USA

4 Department of Pathology, School of Dentistry, Islamic Azad University, Tehran Medical Branch, Tehran, Iran

5 Department of Pharmacology, School of Medicine AND Iranian National Center for Addiction Studies AND Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Tramadol induces its unique effects through opioid pathways, but the exact mechanism is not known. The study aims to evaluate changes in the level of mu-opioid receptor (μOR), delta-opioid receptor (δOR), and phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB) in the hippocampus (HPC) and amygdala (AL) areas of tramadol-treated rats.
Methods: For this purpose, a total of 36 male rats were divided into two main groups for chronic or acute tramadol exposure. The animals were then exposed to 5 mg.kg-1 of tramadol, 10 mg.kg-1 of tramadol, and normal saline. The HPC and AL areas of the animals were dissected upon completion of the period. The levels of p-CREB and μOR were quantified using the western blotting technique. The data were subjected to analysis of variance (ANOVA) followed by Tukey’s post-hoc analysis. The differences with the P-value lower than 0.05 were considered as significant.
Findings: In the HPC and AL areas of the brain, the level of μOR was decreased by acute tramadol exposure, while no significant difference was observed by chronic tramadol exposure. Moreover, results showed that the level of p-CREB dose-dependently increased by acute and chronic tramadol exposure.
Conclusion: HPC and AL are essential in the control of tramadol abuse. Tramadol abuse affects gene expression and transcription factors such as CREB. With acute drug tramadol treatments, the level of cAMP response element-binding protein (CREB) rapidly increases, while by chronic tramadol treatment, “peak and trough pattern is observing”. The activation of the rewarding mechanism is a precise instance of addictive behavior in tramadol-treated individuals.