Promoter Methylation of Two HOXA9 and NISCH Genes in Opium Users

Document Type : Original Article

Authors

1 1. Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran 2. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran

2 1.Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran 2.Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

6 Department of Emergency Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran

7 Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran

10.34172/ahj.2023.1356

Abstract

Background: Opiate abuse has been critically increased in the world, especially in Iran. Owing to the association of opiate use with 
multiple human cancers and neurological disorders, seeking for genetic and epigenetic effects of opium can pave the way for early 
diagnosis of major health defects in addicted users. Accordingly, the present study aimed to determine the methylation status of the promoter of two genes, which are actively involved in neurodevelopment and cancer evolution.

Methods: DNA was isolated from peripheral blood of 28 opium abusers and 19 healthy controls and then subjected to sonication. 
Sonicated DNAs undergone methylated DNA immunoprecipitation-real time polymerase chain reaction (MeDIP-Real Time PCR) 
using specific primer pairs designed for HOXA9 and NISCH genes. Obtained data were analyzed using SPSS software.

Findings: HOXA9 and NISCH genes were found to be significantly methylated in addicted users compared to controls (P<0.001) 
which was significantly associated with the mean of the age regarding HOXA9 gene (P=0.002). Neither opium amount nor duration or route of using was associated with the methylation status of HOXA9 or NISCH genes.

Conclusion: Hypermethylation of HOXA9 and NISCH genes as tumor suppressor in opium-addicted individuals can be considered 
as confirmatory evidence for carcinogenesis of opium. Further studies are required to figure out the role of epigenetic alterations in cancer evolution among opium users.

Highlights

Majid Mahmoodi:  (Google Scholar) (PubMed)

Fatemeh Karami:  (Google Scholar) (PubMed)

Hamidreza Abdollahi:  (Google Scholar) (PubMed)

Navidreza Giahi: (Google Scholar) (PubMed)

Kouros Divsalar: (Google Scholar) (PubMed)

Amin Honarmand: (Google Scholar) (PubMed)

Mohammad Hossein Modarressi: (Google Scholar) (PubMed)

Keywords


1.World Drug Report 2021. Austria: United Nations Publication; 2021.
2. Farooq SA, Rasooly MH, Abidi SH, Modjarrad K, Ali S. Opium trade and the spread of HIV in the Golden Crescent. Harm 
Reduct J. 2017; 14(1): 47. doi: 10.1186/s12954-017-0170-1.
3. Shayan NA, Niazi AU, Moheb H, Mohammadi H, Ahmad Saddiqi KW, Dag O, et al. Epidemiology of drug use in 
herat - Afghanistan. Addict Health. 2022;14(2):68-77. doi: 10.22122/ahj.2022.195606.1223.
4. Mansouri M, Naghshi S, Parsaeian M, Ghajarieh Sepanlou S, Poustchi H, Momayez Sanat Z, et al. Opium use and cancer 
risk: a comprehensive systematic review and meta-analysis of observational studies. Int J Clin Pract. 2022;2022:5397449. 
doi: 10.1155/2022/5397449.
5. Afshari M, Janbabaei G, Bahrami MA, Moosazadeh M. Opium and bladder cancer: a systematic review and meta-analysis of 
the odds ratios for opium use and the risk of bladder cancer. PLoS One. 2017;12(6):e0178527. doi: 10.1371/journal.pone.0178527.
6. Barlass U, Deshmukh A, Beck T, Bishehsari F. Opioid use as a potential risk factor for pancreatic cancer in the United States: 
an analysis of state and national level databases. PLoS One. 2021;16(1):e0244285. doi: 10.1371/journal.pone.0244285.
7. Rashidian H, Zendehdel K, Kamangar F, Malekzadeh R, Haghdoost AA. An ecological study of the association between opiate use and incidence of cancers. Addict Health. 2016;8(4):252-60.
8. Rezaei S, Bakhshani NM, Fanaei H, Trofimova I. Opium effect in pregnancy on the dynamics of maternal behavior: testing a neurochemical model. Neuropsychobiology. 2021;80(2):147-57. doi: 10.1159/000512698.
9. Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020;87(1):22-33. doi: 10.1016/j.biopsych.2019.06.027.
10. Ghodsi M, Shahmohammadi M, Modarressi MH, Karami F. Investigation of promoter methylation of MCPH1 gene in 
circulating cell-free DNA of brain tumor patients. Exp Brain Res. 2020;238(9):1903-9. doi: 10.1007/s00221-020-05848-1.
11. Quinonez SC, Innis JW. Human HOX gene disorders. Mol Genet Metab. 2014;111(1):4-15. doi: 10.1016/j.ymgme.2013.10.012.
12. Alvarado-Ruiz L, Martinez-Silva MG, Torres-Reyes LA, PinaSanchez P, Ortiz-Lazareno P, Bravo-Cuellar A, et al. HOXA9 
is underexpressed in cervical cancer cells and its restoration decreases proliferation, migration and expression of epithelialto-mesenchymal transition genes. Asian Pac J Cancer Prev. 2016;17(3):1037-47. doi: 10.7314/apjcp.2016.17.3.1037.
13. Gurung PMS, Barnett AR, Wilson JS, Hudson J, Ward DG, Messing EM, et al. Prognostic DNA methylation biomarkers 
in high-risk non-muscle-invasive bladder cancer: a systematic review to identify loci for prospective validation. Eur Urol 
Focus. 2020;6(4):683-97. doi: 10.1016/j.euf.2019.02.012.
14. Liu B, Ricarte Filho J, Mallisetty A, Villani C, Kottorou A, Rodgers K, et al. Detection of promoter DNA methylation 
in urine and plasma aids the detection of non-small cell lung cancer. Clin Cancer Res. 2020;26(16):4339-48. doi: 
10.1158/1078-0432.ccr-19-2896.
15. Shen N, Du J, Zhou H, Chen N, Pan Y, Hoheisel JD, et al. A diagnostic panel of DNA methylation biomarkers for lung 
adenocarcinoma. Front Oncol. 2019;9:1281. doi: 10.3389/fonc.2019.01281.
16. Zhang Z, Chen P, Xie H, Cao P. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular 
carcinoma: a systematic review and meta-analysis. Cancer Med. 2020;9(4):1349-64. doi: 10.1002/cam4.2799.
17. Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, et al. Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer. Epigenetics. 2012;7(7):710-9. doi: 10.4161/epi.20524.
18. Krishnamurthy K, Mishra TK, Saxena A, Daga MK, Khurana N, Masroor M, et al. Evaluating NISCH and CDH1 promoter 
hypermethylation in nonsmokers, cancer free smokers and lung cancer patients: a case control study. Indian J Clin 
Biochem. 2019;34(4):458-64. doi: 10.1007/s12291-018-0767-5.
19. Maziveyi M, Alahari SK. Breast cancer tumor suppressors: a special emphasis on novel protein nischarin. Cancer Res. 
2015;75(20):4252-9. doi: 10.1158/0008-5472.can-15-1395.
20. Li S, Wu N, Zhao TY, Lu GY, Wang ZY, Li F, et al. The role of IRAS/Nischarin involved in the development of morphine tolerance and physical dependence. Biochem Biophys Res Commun. 2019;512(3):460-6. doi: 10.1016/j.bbrc.2019.03.055.
21. Ostrow KL, Michailidi C, Guerrero-Preston R, Hoque MO, Greenberg A, Rom W, et al. Cigarette smoke induces methylation of the tumor suppressor gene NISCH. Epigenetics. 2013;8(4):383-8. doi: 10.4161/epi.24195.
22. Karami F, Noori-Daloii MR, Omidfar K, Tabrizi M, Hantooshzadeh S, Aleyasin A, et al. Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res. 2018;44(4):608-13. doi: 10.1111/jog.13577.
23. Kozlenkov A, Jaffe AE, Timashpolsky A, Apontes P, Rudchenko S, Barbu M, et al. DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyperand hypomethylation and a younger epigenetic age. Genes (Basel). 2017;8(6):152. doi: 10.3390/genes8060152.
24. Ji H, Liu G, Xu X, Liu H, Xu L, Hu H, et al. Hypermethylation of the κ1 opioid receptor promoter in Chinese heroin and 
methamphetamine addicts. Exp Ther Med. 2018;16(3):2392-8. doi: 10.3892/etm.2018.6514.
25. Sandoval-Sierra JV, Salgado García FI, Brooks JH, Derefinko KJ, Mozhui K. Effect of short-term prescription opioids on 
DNA methylation of the OPRM1 promoter. Clin Epigenetics. 2020;12(1):76. doi: 10.1186/s13148-020-00868-8.
26. Muñoa-Hoyos I, Araolaza M, Urizar-Arenaza I, Gianzo M, Irazusta J, Subiran N. Sex dependent alteration of epigenetic 
marks after chronic morphine treatment in mice organs. Food Chem Toxicol. 2021;152:112200. doi: 10.1016/j.fct.2021.112200.
27. Zhang J, Fan Y, Zhou J, Ma T, Gao K, Xu M, et al. Methylation quantitative trait locus rs5326 is associated with susceptibility 
and effective dosage of methadone maintenance treatment for heroin use disorder. Psychopharmacology (Berl). 2021;238(12):3511-8. doi: 10.1007/s00213-021-05968-8.
28. Kosciuczuk U, Knapp P, Lotowska-Cwiklewska AM. Opioidinduced immunosuppression and carcinogenesis promotion theories create the newest trend in acute and chronic pain pharmacotherapy. Clinics (Sao Paulo). 2020;75:e1554. doi: 10.6061/clinics/2020/e1554.
29. Moossavi S, Mohamadnejad M, Pourshams A, Poustchi H, Islami F, Sharafkhah M, et al. Opium use and risk of pancreatic 
cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2018;27(3):268-73. doi: 10.1158/1055-
9965.epi-17-0592.