Association of CREB1 (rs2253206) and BDNF (rs6265) Polymorphisms with Implementation Intentions Treatment Response in Smoking Reduction

Document Type : Original Article

Authors

1 Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Psychiatry School of Medicine, Roozbeh Psychiatry Hospital Tehran University of Medical Sciences, Tehran, Iran

3 Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran

4 Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Department of Epidemiology and Biostatistics, School of Public Health and Knowledge Utilization Research Center, Tehran University of Medical Sciences, Tehran, Iran

10.34172/ahj.1502

Abstract

Background: Previous studies have shown that implementation intentions are moderately effective in reducing smoking among
smokers, but the factors determining its effectiveness are unclear. CREB1 (rs2253206) and BDNF (rs6265) polymorphisms have
been proposed as the genes involved in addictive behaviors; therefore, we investigated their association with smokers’ responses
to implementation intentions psychotherapy.
Methods: This clinical trial was conducted on smoking male students at Tehran University and Shahid Beheshti University.
The research sample was 78 smoking students who smoked at least seven cigarettes weekly. All of the participants received an
implementation intentions intervention session. Their smoking rates were measured before and after the intervention, and all
of them were genotyped for CREB1 (rs2253206) and BDNF (rs6265) using PCR-RFLP. The prospective-retrospective memory
questionnaire (PRMQ) was used to evaluate the prospective memory (PM). Analysis of covariance (ANCOVA) and simple linear
regression were used to analyze the data using SPSS version 26 at a significance level of 0.05.
Results: The results showed that implementation intentions affect smoking reduction (t = 4.44, P = 0.001). Data analysis showed
no relationship between these two SNPs and treatment response. Also, no association was observed between these SNPs and PM.
However, regression analysis showed that PM could predict the response to treatment (R2 = 0.10, F = 12.15, P = 0.001).
Conclusion: Implementation intentions can be suitable for reducing smoking. Studying the effect of genetic factors on
psychotherapy in larger samples could be an effective way to individualize psychological treatments in reducing smoking,
including implementation intentions.

Keywords


  1. Taylor GM, Treur JL. An application of the stress-diathesis model: a review about the association between smoking tobacco, smoking cessation, and mental health. Int J Clin Health Psychol. 2023;23(1):100335. doi: 10.1016/j. ijchp.2022.100335.
  2. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta, GA: Centers for Disease Control and Prevention (US); 2014.
  3. Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013;368(4):341-50. doi: 10.1056/NEJMsa1211128.
  4. Creamer MR, Wang TW, Babb S, Cullen KA, Day H, Willis G, et al. Tobacco product use and cessation indicators among adults - United States, 2018. MMWR Morb Mortal Wkly Rep. 2019;68(45):1013-9. doi: 10.15585/mmwr.mm6845a2.
  5. Armitage CJ. Evidence that implementation intentions can overcome the effects of smoking habits. Health Psychol. 2016;35(9):935-43. doi: 10.1037/hea0000344.
  6. Saddawi-Konefka D, Schumacher DJ, Baker KH, Charnin JE, Gollwitzer PM. Changing physician behavior with implementation intentions: closing the gap between intentions and actions. Acad Med. 2016;91(9):1211-6. doi: 10.1097/ acm.0000000000001172.
  7. Hagerman CJ, Hoffman RK, Vaylay S, Dodge T. Implementation intentions to reduce smoking: a systematic review of the literature. Nicotine Tob Res. 2021;23(7):1085-93. doi: 10.1093/ntr/ntaa235.
  8. Gabbard GO. A neurobiologically informed perspective on psychotherapy. Br J Psychiatry. 2000;177:117-22. doi: 10.1192/bjp.177.2.117.
  9. Jiménez JP, Botto A, Herrera L, Leighton C, Rossi JL, Quevedo Y, et al. Psychotherapy and genetic neuroscience: an emerging dialog. Front Genet. 2018;9:257. doi: 10.3389/ fgene.2018.00257.
  10. Bakermans-Kranenburg MJ, van Ijzendoorn MH. The hidden efficacy of interventions: gene × environment experiments from a differential susceptibility perspective. Annu Rev Psychol. 2015;66:381-409. doi: 10.1146/annurev-psych-010814-015407.
  11. de Viron S, Malats N, Van der Heyden J, Van Oyen H, Brand A. Environmental and genomic factors as well as interventions influencing smoking cessation: a systematic review of reviews and a proposed working model. Public Health Genomics. 2013;16(4):159-73. doi: 10.1159/000351453.
  12. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12(11):623- 37. doi: 10.1038/nrn3111.
  13. Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist. 2005;11(4):323-33. doi: 10.1177/1073858404272255.
  14. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257-69. doi: 10.1016/s0092-8674(03)00035-7.
  15. Wang ZR, Zhou DF, Cao LY, Tan YL, Zhang XY, Li J, et al. Brain-derived neurotrophic factor polymorphisms and smoking in schizophrenia. Schizophr Res. 2007;97(1-3):299-301. doi: 10.1016/j.schres.2007.08.012.
  16. Beuten J, Ma JZ, Payne TJ, Dupont RT, Quezada P, Huang W, et al. Significant association of BDNF haplotypes in European- American male smokers but not in European-American female or African-American smokers. Am J Med Genet B Neuropsychiatr Genet. 2005;139B(1):73-80. doi: 10.1002/ ajmg.b.30231.
  17. Halldén S, Sjögren M, Hedblad B, Engström G, Narkiewicz K, Hoffmann M, et al. Smoking and obesity associated BDNF gene variance predicts total and cardiovascular mortality in smokers. Heart. 2013;99(13):949-53. doi: 10.1136/ heartjnl-2013-303634.
  18. Smits JA, Powers MB, Rosenfield D, Zvolensky MJ, Jacquart J, Davis ML, et al. BDNF Val66Met polymorphism as a moderator of exercise enhancement of smoking cessation treatment in anxiety vulnerable adults. Ment Health Phys Act. 2016;10:73-7. doi: 10.1016/j.mhpa.2016.01.001.
  19. Breetvelt EJ, Numans ME, Aukes MF, Hoeben W, Strengman E, Luykx JJ, et al. The association of the alpha-5 subunit of the nicotinic acetylcholine receptor gene and the brain-derived neurotrophic factor gene with different aspects of smoking behavior. Psychiatr Genet. 2012;22(2):96-8. doi: 10.1097/ YPG.0b013e32834c0c75.
  20. Jamal M, Van der Does W, Penninx BW. Effect of variation in BDNF Val66Met polymorphism, smoking, and nicotine dependence on symptom severity of depressive and anxiety disorders. Drug Alcohol Depend. 2015;148:150-7. doi: 10.1016/j.drugalcdep.2014.12.032.
  21. Falcone M, Jepson C, Sanborn P, Cappella JN, Lerman C, Strasser AA. Association of BDNF and COMT genotypes with cognitive processing of anti-smoking PSAs. Genes Brain Behav. 2011;10(8):862-7. doi: 10.1111/j.1601-183X.2011.00726.x.
  22. Bruijniks SJE, van Grootheest G, Cuijpers P, de Kluiver H, Vinkers CH, Peeters F, et al. Working memory moderates the relation between the brain-derived neurotropic factor (BDNF) and psychotherapy outcome for depression. J Psychiatr Res. 2020;130:424-32. doi: 10.1016/j.jpsychires.2020.07.045.
  23. Chen XJ, Wang Y, Liu LL, Cui JF, Gan MY, Shum DH, et al. The effect of implementation intention on prospective memory: a systematic and meta-analytic review. Psychiatry Res. 2015;226(1):14-22. doi: 10.1016/j.psychres.2015.01.011.
  24. Chasteen AL, Park DC, Schwarz N. Implementation intentions and facilitation of prospective memory. Psychol Sci. 2001;12(6):457-61. doi: 10.1111/1467-9280.00385.
  25. Avgan N, Sutherland HG, Lea RA, Spriggens LK, Haupt LM, Shum DHK, et al. A CREB1 gene polymorphism (rs2253206) is associated with prospective memory in a healthy cohort. Front Behav Neurosci. 2017;11:86. doi: 10.3389/ fnbeh.2017.00086.
  26. Pal A, Chakraborty J, Das S. Association of CREB1 gene polymorphism with drug seeking behaviour in eastern Indian addicts. Neurosci Lett. 2014;570:53-7. doi: 10.1016/j. neulet.2014.03.064.
  27. Girault JA, Valjent E, Caboche J, Hervé D. ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol. 2007;7(1):77-85. doi: 10.1016/j.coph.2006.08.012.
  28. Brunzell DH, Mineur YS, Neve RL, Picciotto MR. Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology. 2009;34(8):1993-2001. doi: 10.1038/npp.2009.11.
  29. Kenney JW, Poole RL, Adoff MD, Logue SF, Gould TJ. Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One. 2012;7(6):e39939. doi: 10.1371/journal.pone.0039939.
  30. Finkbeiner S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci. 2000;57(3):394- 401. doi: 10.1007/pl00000701.
  31. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35(4):605-23. doi: 10.1016/s0896-6273(02)00828-0.
  32. World Health Organization (WHO). Economics of Tobacco Toolkit: Assessment of the Economic Costs of Smoking. WHO; 2011.
  33. Armitage CJ. A volitional help sheet to encourage smoking cessation: a randomized exploratory trial. Health Psychol. 2008;27(5):557-66. doi: 10.1037/0278-6133.27.5.557.
  34. Crawford JR, Smith G, Maylor EA, Della Sala S, Logie RH. The Prospective and Retrospective Memory Questionnaire (PRMQ): normative data and latent structure in a large non-clinical sample. Memory. 2003;11(3):261-75. doi: 10.1080/09658210244000027.
  35. Armitage CJ. Efficacy of a brief worksite intervention to reduce smoking: the roles of behavioral and implementation intentions. J Occup Health Psychol. 2007;12(4):376-90. doi: 10.1037/1076-8998.12.4.376.
  36. Armitage CJ, Arden MA. How useful are the stages of change for targeting interventions? Randomized test of a brief intervention to reduce smoking. Health Psychol. 2008;27(6):789-98. doi: 10.1037/0278-6133.27.6.789.
  37. Webb TL, Sheeran P, Luszczynska A. Planning to break unwanted habits: habit strength moderates implementation intention effects on behaviour change. Br J Soc Psychol. 2009;48(Pt 3):507-23. doi: 10.1348/014466608x370591.
  38. Moody LN, Poe LM, Bickel WK. Toward a laboratory model for psychotherapeutic treatment screening: implementation intentions and incentives for abstinence in an analog of smoking relapse. Exp Clin Psychopharmacol. 2017;25(5):373- 9. doi: 10.1037/pha0000136.
  39. 39McWilliams L, Bellhouse S, Yorke J, Lloyd K, Armitage CJ. Beyond “planning”: a meta-analysis of implementation intentions to support smoking cessation. Health Psychol. 2019;38(12):1059-68. doi: 10.1037/hea0000768.
  40. Malaguti A, Ciocanel O, Sani F, Dillon JF, Eriksen A, Power K. Effectiveness of the use of implementation intentions on reduction of substance use: a meta-analysis. Drug Alcohol Depend. 2020;214:108120. doi: 10.1016/j. drugalcdep.2020.108120.
  41. Wieber F, Thürmer JL, Gollwitzer PM. Promoting the translation of intentions into action by implementation intentions: behavioral effects and physiological correlates. Front Hum Neurosci. 2015;9:395. doi: 10.3389/fnhum.2015.00395.
  42. Webb TL, Sheeran P. Mechanisms of implementation intention effects: the role of goal intentions, self-efficacy, and accessibility of plan components. Br J Soc Psychol. 2008;47(Pt 3):373-95. doi: 10.1348/014466607x267010.
  43. Conner M, Higgins AR. Long-term effects of implementation intentions on prevention of smoking uptake among adolescents: a cluster randomized controlled trial. Health Psychol. 2010;29(5):529-38. doi: 10.1037/a0020317.
  44. Hagger MS, Luszczynska A. Implementation intention and action planning interventions in health contexts: state of the research and proposals for the way forward. Appl Psychol Health Well Being. 2014;6(1):1-47. doi: 10.1111/aphw.12017.
  45. Gollwitzer PM. Implementation intentions: strong effects of simple plans. Am Psychol. 1999;54(7):493-503. doi: 10.1037/0003-066x.54.7.493.
  46. Epton T, Armitage CJ. Does situation-specificity affect the operation of implementation intentions? Behav Ther. 2017;48(6):860-9. doi: 10.1016/j.beth.2017.08.003.
  47. Prestwich A, Kellar I. How can the impact of implementation intentions as a behaviour change intervention be improved? Eur Rev Appl Psychol. 2014;64(1):35-41. doi: 10.1016/j. erap.2010.03.003.
  48. Burgess PW, Quayle A, Frith CD. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia. 2001;39(6):545-55. doi: 10.1016/s0028-3932(00)00149-4.
  49. Singer JJ, Falchi M, Macgregor AJ, Cherkas LF, Spector TD. Genome-wide scan for prospective memory suggests linkage to chromosome 12q22. Behav Genet. 2006;36(1):18-28. doi: 10.1007/s10519-005-9011-1.
  50. Fullana MA, Alonso P, Gratacòs M, Jaurrieta N, Jiménez- Murcia S, Segalàs C, et al. Variation in the BDNF Val66Met polymorphism and response to cognitive-behavior therapy in obsessive-compulsive disorder. Eur Psychiatry. 2012;27(5):386-90. doi: 10.1016/j.eurpsy.2011.09.005.
  51. Felmingham KL, Dobson-Stone C, Schofield PR, Quirk GJ, Bryant RA. The brain-derived neurotrophic factor Val66Met polymorphism predicts response to exposure therapy in posttraumatic stress disorder. Biol Psychiatry. 2013;73(11):1059-63. doi: 10.1016/j.biopsych.2012.10.033.
  52. Peters RB, Xavier J, Mondin TC, de Azevedo Cardoso T, Ferreira FB, Teixeira L, et al. BDNF Val66Met polymorphism and resilience in major depressive disorder: the impact of cognitive psychotherapy. Braz J Psychiatry. 2020;43(1):22-8. doi: 10.1590/1516-4446-2019-0726.
  53. Santacana M, Arias B, Mitjans M, Bonillo A, Montoro M, Rosado S, et al. Correction: predicting response trajectories during cognitive-behavioural therapy for panic disorder: no association with the BDNF gene or childhood maltreatment. PLoS One. 2016;11(12):e0167833. doi: 10.1371/journal. pone.0167833.
  54. da Silva SK, Wiener C, Ghisleni G, Oses JP, Jansen K, Molina ML, et al. Effects of cognitive-behavioral therapy on neurotrophic factors in patients with major depressive disorder. Braz J Psychiatry. 2018;40(4):361-6. doi: 10.1590/1516-4446- 2017-2357.
  55. Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - a review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev. 2020;77:101830. doi: 10.1016/j.cpr.2020.101830.
  56. Kumsta R. The role of epigenetics for understanding mental health difficulties and its implications for psychotherapy research. Psychol Psychother. 2019;92(2):190-207. doi: 10.1111/papt.12227.