1. Sheikh M, Shakeri R, Poustchi H, Pourshams A, Etemadi A,
Islami F, et al. Opium use and subsequent incidence of cancer:
results from the Golestan Cohort Study. Lancet Glob Health.
2020;8(5):e649-60. doi: 10.1016/s2214-109x(20)30059-0.
2. Grim TW, Schmid CL, Stahl EL, Pantouli F, Ho JH, Acevedo-
Canabal A, et al. A G protein signaling-biased agonist at
the μ-opioid receptor reverses morphine tolerance while
preventing morphine withdrawal. Neuropsychopharmacology.
2020;45(2):416-25. doi: 10.1038/s41386-019-0491-8.
3. Asuni GP, Speidell A, Mocchetti I. Neuronal apoptosis induced
by morphine withdrawal is mediated by the p75 neurotrophin
receptor. J Neurochem. 2021;158(2):169-81. doi: 10.1111/
jnc.15355.
4. Azadi M, Gompf HS, Azizi H. Paternal exposure to morphine
during adolescence potentiates morphine withdrawal in male
offspring: Involvement of the lateral paragigantocellularis
nucleus. J Psychopharmacol. 2020;34(11):1289-99. doi:
10.1177/0269881120953993.
5. Qu L, Wang Y, Li Y, Wang X, Li N, Ge S, et al. Decreased
neuronal excitability in medial prefrontal cortex during
morphine withdrawal is associated with enhanced SK channel
activity and upregulation of small GTPase Rac1. Theranostics.
2020;10(16):7369-83. doi: 10.7150/thno.44893.
6. Ayoub SM, Smoum R, Farag M, Atwal H, Collins SA, Rock
EM, et al. Oleoyl alanine (HU595): a stable monomethylated
oleoyl glycine interferes with acute naloxone precipitated
morphine withdrawal in male rats. Psychopharmacology (Berl).
2020;237(9):2753-65. doi: 10.1007/s00213-020-05570-4.
7. Ujcikova H, Cechova K, Jagr M, Roubalova L, Vosahlikova M,
Svoboda P. Proteomic analysis of protein composition of rat
hippocampus exposed to morphine for 10 days; comparison
with animals after 20 days of morphine withdrawal. PLoS One.
2020;15(4):e0231721. doi: 10.1371/journal.pone.0231721.
8. Rahmati-Dehkordi F, Ghaemi-Jandabi M, Garmabi B,induced morphine withdrawal and neuronal activity of
lateral paragigantocellularis nucleus. Behav Brain Res.
2021;414:113450. doi: 10.1016/j.bbr.2021.113450.
9. Ximenes JC, de Oliveira Gonçalves D, Siqueira RM, Neves
KR, Santos Cerqueira G, Correia AO, et al. Valproic acid:
an anticonvulsant drug with potent antinociceptive and
anti-inflammatory properties. Naunyn Schmiedebergs Arch
Pharmacol. 2013;386(7):575-87. doi: 10.1007/s00210-013-
0853-4.
10. Dalvi A, Rodgers RJ. Anxiolytic effects of valproate and
diazepam in mice are differentially sensitive to picrotoxin
antagonism. Pharmacol Biochem Behav. 2001;68(1):23-32.
doi: 10.1016/s0091-3057(00)00408-1.
11. de Los Ángeles Cintado M, De la Casa LG, González G.
Anxiolytic and sedative effects of sodium valproate with
different experimental paradigms in male and female rats.
Neuropsychopharmacol Rep 2024;44(4):737-48. doi:
10.1002/npr2.12483.
12. Vorma H, Katila H. Effect of valproate on benzodiazepine
withdrawal severity in opioid-dependent subjects: a pilot
study. Heroin Addict Relat Clin Probl. 2011;13(1):15-20.
13. Motaghinejad M, Fatima S, Banifazl S, Bangash MY, Karimian
M. Study of the effects of controlled morphine administration
for treatment of anxiety, depression and cognition impairment
in morphine-addicted rats. Adv Biomed Res. 2016;5:178. doi:
10.4103/2277-9175.188491.
14. Sepehri G, Parsania S, Hajzadeh MA, Haghpanah T, Sheibani
V, Divsalar K, et al. The effects of co-administration of opium
and morphine with nicotine during pregnancy on spatial
learning and memory of adult male offspring rats. Iran J Basic
Med Sci. 2014;17(9):694-701.
15. Pahlavan Y, Sepehri G, Sheibani V, Afarinesh Khaki M,
Gojazadeh M, Pahlavan B, et al. Study the antinociceptive
effect of intracerebroventricular injection of aqueous extract
of Origanum vulgare leaves in rat: possible involvement of
opioid system. Iran J Basic Med Sci. 2013;16(10):1109-13.
16. Shafiei F, Afarinesh MR, Golshan F, Haghpanah T,
Sabzalizadeh M, Zangiabadi I, et al. Comparison of pre-pulse
inhibition, tactile discrimination learning and barrel cortical
neural response in adult male rats following chronic exposure
to morphine, methadone and buprenorphine. Physiol Behav.
2019;212:112694. doi: 10.1016/j.physbeh.2019.112694.
17. Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A Developmental
Study of Abnormal Behaviors and Altered GABAergic
Signaling in the VPA-Treated Rat Model of Autism. Front Behav
Neurosci. 2018;12:182. doi: 10.3389/fnbeh.2018.00182.
18. Perucca E. Pharmacological and therapeutic properties of
valproate: a summary after 35 years of clinical experience.
CNS Drugs. 2002;16(10):695-714. doi: 10.2165/00023210-
200216100-00004.
19. Aranarochana A, Kaewngam S, Anosri T, Sirichoat A,
Pannangrong W, Wigmore P, et al. Hesperidin reduces
memory impairment associated with adult rat hippocampal
neurogenesis triggered by valproic acid. Nutrients.
2021;13(12):4364. doi: 10.3390/nu13124364.
20. Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed AF.
Hidden pharmacological activities of valproic acid: a new
insight. Biomed Pharmacother. 2021;142:112021. doi:
10.1016/j.biopha.2021.112021.
21. Mu P, Yu LC. Valproic acid sodium inhibits the morphineinduced
conditioned place preference in the central nervous
system of rats. Neurosci Lett. 2007;426(3):135-8. doi:
10.1016/j.neulet.2007.04.017.
22. Umka J, Mustafa S, ElBeltagy M, Thorpe A, Latif L,
Bennett G, et al. Valproic acid reduces spatial working
memory and cell proliferation in the hippocampus.
Neuroscience. 2010;166(1):15-22. doi: 10.1016/j.
neuroscience.2009.11.073.
23. Zangiabadi I, Afarinesh MR, Shamsara A, Eftekhar-Vaghefi SH.
Movento effects on learning and hippocampal brain-derived
neurotrophic factor protein of adult male rats. Environ Sci
Pollut Res Int. 2019;26(36):36615-22. doi: 10.1007/s11356-
019-06809-0.
24. Sabzalizadeh M, Afarinesh MR, Mafi F, Mosanejad E,
Haghpanah T, Golshan F, et al. Alcohol and nicotine co-
Administration during pregnancy and lactation periods
alters sensory discrimination of adult NMRI mice offspring.
Physiol Behav. 2020;213:112731. doi: 10.1016/j.
physbeh.2019.112731.
25. Niesink RJ, van Ree JM. Short-term isolation increases social
interactions of male rats: a parametric analysis. Physiol Behav.
1982;29(5):819-25. doi: 10.1016/0031-9384(82)90331-6.
26. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates.
Elsevier; 2007. p. 44-168.
27. Aranarochana A, Chaisawang P, Sirichoat A, Pannangrong W,
Wigmore P, Welbat JU. Protective effects of melatonin against
valproic acid-induced memory impairments and reductions
in adult rat hippocampal neurogenesis. Neuroscience.
2019;406:580-93. doi: 10.1016/j.neuroscience.2019.02.022.
28. Nouri F, Afarinesh MR, Sheibani V, Foroumadi A, Esmaeili
Mahani S, Mahmoudi M, et al. Concomitant abuse of
methadone and methamphetamine could impair spatial
learning and memory in male rats. Learn Motiv. 2019;65:43-
51. doi: 10.1016/j.lmot.2019.01.001.
29. Bozorgi H, Motaghi E, Zamani M, Ghavimi R. Neuronal
calcium channels blocker, ziconotide (ɷ-conotoxin
MVIIA), reverses morphine withdrawal-induced memory
impairments via alteration in hippocampal NMDA receptor
expression in rats. Toxin Rev. 2020;39(4):323-32. doi:
10.1080/15569543.2018.1525402.
30. Ahmadi BB, Afarinesh MR, Jafaripour L, Sheibani V. Alteration
in social interaction and tactile discrimination of juvenile
autistic-like rats following tactile stimulation and whisker
deprivation. Brain Behav. 2023;13(5):e2993. doi: 10.1002/
brb3.2993.
31. Yao ZG, Liang L, Liu Y, Zhang L, Zhu H, Huang L, et al.
Valproate improves memory deficits in an Alzheimer’s disease
mouse model: investigation of possible mechanisms of action.
Cell Mol Neurobiol. 2014;34(6):805-12. doi: 10.1007/
s10571-013-0012-y.
32. Dobashi T, Tanabe S, Jin H, Nishino T, Aoe T. Valproate
attenuates the development of morphine antinociceptive
tolerance. Neurosci Lett. 2010;485(2):125-8. doi: 10.1016/j.
neulet.2010.08.084 .
33. Schneider T, Przewłocki R. Behavioral alterations in rats
prenatally exposed to valproic acid: animal model of autism.
Neuropsychopharmacology. 2005;30(1):80-9. doi: 10.1038/
sj.npp.1300518.
34. Edalatmanesh MA, Nikfarjam H, Vafaee F, Moghadas M.
Increased hippocampal cell density and enhanced spatial
memory in the valproic acid rat model of autism. Brain Res.
2013;1526:15-25. doi: 10.1016/j.brainres.2013.06.024.
35. Morakotsriwan N, Wattanathorn J, Kirisattayakul W,
Chaisiwamongkol K. Autistic-like behaviors, oxidative stress
status, and histopathological changes in cerebellum of valproic
acid rat model of autism are improved by the combined extract
of purple rice and silkworm pupae. Oxid Med Cell Longev.
2016;2016:3206561. doi: 10.1155/2016/3206561.
36. Cuevas-Olguin R, Roychowdhury S, Banerjee A, Garcia-
Oscos F, Esquivel-Rendon E, Bringas ME, et al. Cerebrolysin
prevents deficits in social behavior, repetitive conduct, and
synaptic inhibition in a rat model of autism. J Neurosci Res. 2017;95(12):2456-68. doi: 10.1002/jnr.24072.
37. Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo
P, Palmery M, et al. Sex-specific autistic endophenotypes
induced by prenatal exposure to valproic acid involve
anandamide signalling. Br J Pharmacol. 2018;175(18):3699-
712. doi: 10.1111/bph.14435.
38. Sabzalizadeh M, Mollashahi M, Afarinesh MR, Mafi F, Joushy
S, Sheibani V. Sex difference in cognitive behavioral alterations
and barrel cortex neuronal responses in rats exposed
prenatally to valproic acid under continuous environmental
enrichment. Int J Dev Neurosci. 2022;82(6):513-27. doi:
10.1002/jdn.10206.
39. Piccin A, Courtand G, Contarino A. Morphine reduces the
interest for natural rewards. Psychopharmacology (Berl).
2022;239(8):2407-19. doi: 10.1007/s00213-022-06131-7.
40. Seiffe A, Ramírez MF, Sempé L, Depino AM. Juvenile handling
rescues autism-related effects of prenatal exposure to valproic
acid. Sci Rep. 2022;12(1):7174. doi: 10.1038/s41598-022-
11269-7.
41. Takahashi M, Takasugi T, Kawakami A, Wei R, Ando K,
Ohshima T, et al. Valproic acid-induced anxiety and
depression behaviors are ameliorated in p39 Cdk5 activatordeficient
mice. Neurochem Res. 2022;47(9):2773-9. doi:
10.1007/s11064-022-03642-9.
42. Berrocoso E, Ikeda K, Sora I, Uhl GR, Sánchez-Blázquez P,
Mico JA. Active behaviours produced by antidepressants
and opioids in the mouse tail suspension test. Int J
Neuropsychopharmacol. 2013;16(1):151-62. doi: 10.1017/
s1461145711001842.
43. Huang YH, Yeh SH, Loh HH, Chuang JY. Pharmacological
studies of morphine in a novel humanized mu opioid
receptor mouse model. FASEB J. 2020;34(S1):1. doi: 10.1096/
fasebj.2020.34.s1.02835.
44. Eacret D, Noreck J, Blendy JA. Adenosine Monophosphateactivated
Protein Kinase (AMPK) in serotonin neurons
mediates select behaviors during protracted withdrawal from
morphine in mice. Behav Brain Res. 2022;419:113688. doi:
10.1016/j.bbr.2021.113688.
45. Martins CC, Rosa SG, Recchi AMS, Nogueira CW, Zeni G.
m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe) 2
modulates the hippocampal neurotoxic adaptations and
abolishes a depressive-like phenotype in a short-term
morphine withdrawal in mice. Prog Neuropsychopharmacol
Biol Psychiatry. 2020;98:109803. doi: 10.1016/j.
pnpbp.2019.109803.
46. Vahidi S, Khalili M, Kiasalari Z, Yaghoutpoor E. Effect
of methadone and valproate combination on morphine
withdrawal-induced anxiety and depression in male mice. J
Gorgan Univ Med Sci. 2014;16(4):21-7. [Persian].
47. Farzad P, Rahimi R, Ebrahimi SA, Aghajani F, Mousavi Z,
Najafizadeh P. The effect of voluntary exercise and prenatal
exposure to sodium valproate on learning, memory, and
anxiety of rats’ offspring. Iran J Med Sci. 2020;45(1):32-40.
doi: 10.30476/ijms.2019.45314.
48. Bach DR, Korn CW, Vunder J, Bantel A. Effect of valproate and
pregabalin on human anxiety-like behaviour in a randomised
controlled trial. Transl Psychiatry. 2018;8(1):157. doi: 10.1038/
s41398-018-0206-7.
49. Salehi M, Safavi P, Barktin M. The effect of sodium valporate
on the treatment of opium withdrawal patients. Yafteh.
2006;7(1):37-43. [Persian].
50. Gong YX, Lv M, Zhu YP, Zhu YY, Wei EQ, Shi H, et al.
Endogenous histamine inhibits the development of morphineinduced
conditioned place preference. Acta Pharmacol Sin.
2007;28(1):10-8. doi: 10.1111/j.1745-7254.2007.00470.x.
51. Li JX, Zhang Q, Liang JH. Valproate prevents the induction,
but not the expression of morphine sensitization in mice.
Behav Brain Res. 2004;152(2):251-7. doi: 10.1016/j.
bbr.2003.10.006.
52. Li JX, Han R, Deng YP, Chen SQ, Liang JH. Different
effects of valproate on methamphetamine- and cocaineinduced
behavioral sensitization in mice. Behav Brain Res.
2005;161(1):125-32. doi: 10.1016/j.bbr.2005.01.015.
53. Brunello N. Mood stabilizers: protecting the mood...protecting
the brain. J Affect Disord. 2004;79 Suppl 1:S15-20. doi:
10.1016/j.jad.2004.01.002.
54. Mu P, Yu LC. Valproic acid sodium inhibits the morphineinduced
conditioned place preference in the central nervous
system of rats. Neurosci Lett. 2007;426(3):135-8. doi:
10.1016/j.neulet.2007.04.017.
55. Halikas JA, Center BA, Pearson VL, Carlson GA, Crea F.
A pilot, open clinical study of depakote in the treatment of
cocaine abuse. Hum Psychopharmacol. 2001;16(3):257-64.
doi: 10.1002/hup.252.
56. Levin FR, McDowell D, Evans SM, Nunes E, Akerele
E, Donovan S, et al. Pharmacotherapy for marijuana
dependence: a double-blind, placebo-controlled pilot study
of divalproex sodium. Am J Addict. 2004;13(1):21-32. doi:
10.1080/10550490490265280.
Semnanian S, Azizi H. Circadian rhythm influences naloxone