The role of orexin receptor antagonists in inhibiting the development of drug addiction: A review of past studies

Document Type : Review Article(s)

Authors

1 1. Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran 2. Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran

3 Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran

4 Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA

5 Department of Physical Therapy, Faculty of Paramedical and Rehabilitation Science, Mashhad University of Medical Sciences, Mashhad, Iran

10.34172/ahj.2024.1491

Abstract

The orexinergic system and its receptors are involved in many physiological processes. Their functions in energy homeostasis, 
arousal, cognition, stress processing, endocrine functions, and pain modulation have been investigated. Many studies have shown
that the orexinergic system cooperates with the dopaminergic system in the addiction process. Emerging evidence suggests that the 
orexinergic system can be effective in the induction of drug dependence and tolerance. Therefore, several researches have been 
conducted on the effect of orexin receptor (OXR) antagonists on reducing tolerance and dependence caused by drug abuse. Due 
to the significant growth of the studies on the orexinergic system, the current literature was conducted to collect the findings of 
previous studies on orexin and its receptors in the induction of drug addiction. In addition, cellular and molecular mechanisms
of the possible role of orexin in drug tolerance and dependence are discussed. The findings indicate that the administration of
OXR antagonists reduces drug dependence. OXR blockers seem to counteract the addictive effects of drugs through multiple 
mechanisms, such as preventing neuronal adaptation. This review proposes the potential clinical use of OXR antagonists in the 
treatment of drug dependence.

Highlights

Peyman Esmaili-Shahzade-Ali-Akbari: (Google Scholar) (PubMed)

Amir - Ghaderi: (Google Scholar) (PubMed)

Atena Sadeghi: (Google Scholar) (PubMed)

Fatemeh Nejat: (Google Scholar) (PubMed)

Alireza Mehramiz: (Google Scholar) (PubMed)

Keywords


1. Koob GF, Volkow ND. Neurobiology of addiction: a 
neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760-73. 
doi: 10.1016/s2215-0366(16)00104-8.
2. Bailey CP, Connor M. Opioids: cellular mechanisms of 
tolerance and physical dependence. Curr Opin Pharmacol. 
2005;5(1):60-8. doi: 10.1016/j.coph.2004.08.012.
3. Williams JT, Ingram SL, Henderson G, Chavkin C, von 
Zastrow M, Schulz S, et al. Regulation of μ-opioid receptors: 
desensitization, phosphorylation, internalization, and 
tolerance. Pharmacol Rev. 2013;65(1):223-54. doi: 10.1124/
pr.112.005942.
4. Simonovska N, Chibishev A, Babulovska A, Pereska Z, 
Jurukov I, Glasnovic M. Program of the university clinic of 
toxicology, skopje, republic of macedonia in treatment of drug 
addiction (buprenorfin treatment protocol). Mater Sociomed. 
2011;23(4):232-4. doi: 10.5455/msm.2011.23.232-234.
5. Delargy I, Crowley D, Van Hout MC. Twenty years of the 
methadone treatment protocol in Ireland: reflections on the 
role of general practice. Harm Reduct J. 2019;16(1):5. doi: 
10.1186/s12954-018-0272-4.
6. Judd LL, Marston MG, Attkisson C, Berrettini W, Buc NL, 
Bunney BS, et al. Effective medical treatment of opiate 
addiction. JAMA. 1998;280(22):1936-43.
7. Dubey AK, Handu SS, Mediratta PK. Suvorexant: The first 
orexin receptor antagonist to treat insomnia. J Pharmacol 
Pharmacother. 2015;6(2):118-21. doi: 10.4103/0976-
500x.155496.
8. Barson JR, Leibowitz SF. Hypothalamic neuropeptide 
signaling in alcohol addiction. Prog Neuropsychopharmacol 
Biol Psychiatry. 2016;65:321-9. doi: 10.1016/j.
pnpbp.2015.02.006.
9. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson 
PE, et al. The hypocretins: hypothalamus-specific peptides 
with neuroexcitatory activity. Proc Natl Acad Sci U S A. 
1998;95(1):322-7. doi: 10.1073/pnas.95.1.322.
10. Ebrahim IO, Howard RS, Kopelman MD, Sharief MK, 
Williams AJ. The hypocretin/orexin system. J R Soc Med. 
2002;95(5):227-30. doi: 10.1177/014107680209500503.
11. Razavi BM, Hosseinzadeh H. A review of the role of 
orexin system in pain modulation. Biomed Pharmacother. 
2017;90:187-93. doi: 10.1016/j.biopha.2017.03.053.
12. Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones 
G. Motivational activation: a unifying hypothesis of orexin/
hypocretin function. Nat Neurosci. 2014;17(10):1298-303. 
doi: 10.1038/nn.3810.
13. James MH, Mahler SV, Moorman DE, Aston-Jones G. A 
decade of orexin/hypocretin and addiction: where are we 
now? Curr Top Behav Neurosci. 2017;33:247-81. doi: 
10.1007/7854_2016_57.
14. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in 
the VTA is critical for the induction of synaptic plasticity and 
behavioral sensitization to cocaine. Neuron. 2006;49(4):589-
601. doi: 10.1016/j.neuron.2006.01.016.
15. Harris GC, Wimmer M, Aston-Jones G. A role for lateral 
hypothalamic orexin neurons in reward seeking. Nature. 
2005;437(7058):556-9. doi: 10.1038/nature04071.
16. Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G. 
Lateral hypothalamic orexin neurons are critically involved 
in learning to associate an environment with morphine 
reward. Behav Brain Res. 2007;183(1):43-51. doi: 10.1016/j.
bbr.2007.05.025.
17. Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, 
Botticelli L, et al. Targeting orexin receptors: recent advances 
in the development of subtype selective or dual ligands for 
the treatment of neuropsychiatric disorders. Med Res Rev. 
2023;43(5):1607-67. doi: 10.1002/med.21959.
18. Cao M, Guilleminault C. Hypocretin and its emerging role as 
a target for treatment of sleep disorders. Curr Neurol Neurosci 
Rep. 2011;11(2):227-34. doi: 10.1007/s11910-010-0172-9.
19. Scammell TE, Winrow CJ. Orexin receptors: pharmacology 
and therapeutic opportunities. Annu Rev Pharmacol 
Toxicol. 2011;51:243-66. doi: 10.1146/annurevpharmtox-010510-100528.
20. Adeghate E. Orexins: tissue localization, functions, and its 
relation to insulin secretion and diabetes mellitus. Vitam 
Horm. 2012;89:111-33. doi: 10.1016/b978-0-12-394623-
2.00007-x.
21. Adam JA, Menheere PP, van Dielen FM, Soeters PB, Buurman 
WA, Greve JW. Decreased plasma orexin-A levels in obese 
individuals. Int J Obes Relat Metab Disord. 2002;26(2):274-6. 
doi: 10.1038/sj.ijo.0801868.
22. Adamantidis A, de Lecea L. Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab. 
2008;19(10):362-70. doi: 10.1016/j.tem.2008.08.007.
23. Mieda M, Sakurai T. Overview of orexin/hypocretin system. 
Prog Brain Res. 2012;198:5-14. doi: 10.1016/b978-0-444-
59489-1.00002-1.
24. Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, 
Kilduff TS, et al. Hypocretin (orexin) activation and synaptic 
innervation of the locus coeruleus noradrenergic system. J 
Comp Neurol. 1999;415(2):145-59.
25. van den Pol AN, Ghosh PK, Liu RJ, Li Y, Aghajanian GK, 
Gao XB. Hypocretin (orexin) enhances neuron activity and 
cell synchrony in developing mouse GFP-expressing locus 
coeruleus. J Physiol. 2002;541(Pt 1):169-85. doi: 10.1113/
jphysiol.2002.017426.
26. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes 
S, et al. Orexin A activates locus coeruleus cell firing and 
increases arousal in the rat. Proc Natl Acad Sci U S A. 
1999;96(19):10911-6. doi: 10.1073/pnas.96.19.10911.
27. Rivas M, Ferreira A, Torterolo P, Benedetto L. Hypocretins, 
sleep, and maternal behavior. Front Behav Neurosci. 
2023;17:1184885. doi: 10.3389/fnbeh.2023.1184885.
28. Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, et al. The orexin/
receptor system: molecular mechanism and therapeutic 
potential for neurological diseases. Front Mol Neurosci. 
2018;11:220. doi: 10.3389/fnmol.2018.00220.
29. Guo Y, Wang HL, Xiang XH, Zhao Y. The role of glutamate 
and its receptors in mesocorticolimbic dopaminergic regions 
in opioid addiction. Neurosci Biobehav Rev. 2009;33(6):864-
73. doi: 10.1016/j.neubiorev.2009.02.005.
30. Gass JT, Olive MF. Glutamatergic substrates of drug addiction 
and alcoholism. Biochem Pharmacol. 2008;75(1):218-65. 
doi: 10.1016/j.bcp.2007.06.039.
31. McLaughlin J, See RE. Selective inactivation of the 
dorsomedial prefrontal cortex and the basolateral amygdala 
attenuates conditioned-cued reinstatement of extinguished 
cocaine-seeking behavior in rats. Psychopharmacology (Berl). 
2003;168(1-2):57-65. doi: 10.1007/s00213-002-1196-x.
32. Goldstein RZ, Volkow ND. Drug addiction and its 
underlying neurobiological basis: neuroimaging evidence 
for the involvement of the frontal cortex. Am J Psychiatry. 
2002;159(10):1642-52. doi: 10.1176/appi.ajp.159.10.1642.
33. Pierce RC, Kalivas PW. A circuitry model of the expression 
of behavioral sensitization to amphetamine-like 
psychostimulants. Brain Res Brain Res Rev. 1997;25(2):192-
216. doi: 10.1016/s0165-0173(97)00021-0.
34. Goldman-Rakic PS. The physiological approach: functional 
architecture of working memory and disordered cognition 
in schizophrenia. Biol Psychiatry. 1999;46(5):650-61. doi: 
10.1016/s0006-3223(99)00130-4.
35. Bouyer JJ, Park DH, Joh TH, Pickel VM. Chemical and 
structural analysis of the relation between cortical inputs and 
tyrosine hydroxylase-containing terminals in rat neostriatum. 
Brain Res. 1984;302(2):267-75. doi: 10.1016/0006-
8993(84)90239-7.
36. Xi ZX, Stein EA. Blockade of ionotropic glutamatergic 
transmission in the ventral tegmental area reduces 
heroin reinforcement in rat. Psychopharmacology (Berl). 
2002;164(2):144-50. doi: 10.1007/s00213-002-1190-3.
37. Acquas E, Di Chiara G. Depression of mesolimbic dopamine 
transmission and sensitization to morphine during opiate 
abstinence. J Neurochem. 1992;58(5):1620-5. doi: 10.1111/
j.1471-4159.1992.tb10033.x.
38. Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, 
Szymusiak R, et al. GABA-mediated control of hypocretinbut not melanin-concentrating hormone-immunoreactive 
neurones during sleep in rats. J Physiol. 2005;563(Pt 2):569-
82. doi: 10.1113/jphysiol.2004.076927.
39. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, 
Eisch AJ, et al. Involvement of the lateral hypothalamic 
peptide orexin in morphine dependence and withdrawal. 
J Neurosci. 2003;23(8):3106-11. doi: 10.1523/
jneurosci.23-08-03106.2003.
40. Yeoh JW, James MH, Jobling P, Bains JS, Graham BA, Dayas 
CV. Cocaine potentiates excitatory drive in the perifornical/
lateral hypothalamus. J Physiol. 2012;590(16):3677-89. doi: 
10.1113/jphysiol.2012.230268.
41. Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, et al. 
Repeated in vivo exposure of cocaine induces long-lasting 
synaptic plasticity in hypocretin/orexin-producing neurons in 
the lateral hypothalamus in mice. J Physiol. 2013;591(7):1951-
66. doi: 10.1113/jphysiol.2012.246983.
42. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown 
RE. Excitation of ventral tegmental area dopaminergic and 
nondopaminergic neurons by orexins/hypocretins. J Neurosci. 
2003;23(1):7-11. doi: 10.1523/jneurosci.23-01-00007.2003.
43. Vittoz NM, Berridge CW. Hypocretin/orexin selectively 
increases dopamine efflux within the prefrontal 
cortex: involvement of the ventral tegmental area. 
Neuropsychopharmacology. 2006;31(2):384-95. doi: 
10.1038/sj.npp.1300807.
44. Ahmadi-Soleimani SM, Azizi H, Gompf HS, Semnanian 
S. Role of orexin type-1 receptors in paragiganto-coerulear 
modulation of opioid withdrawal and tolerance: a site specific 
focus. Neuropharmacology. 2017;126:25-37. doi: 10.1016/j.
neuropharm.2017.08.024.
45. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, 
Miyatake M, et al. Direct involvement of orexinergic systems 
in the activation of the mesolimbic dopamine pathway 
and related behaviors induced by morphine. J Neurosci. 
2006;26(2):398-405. doi: 10.1523/jneurosci.2761-05.2006.
46. Baimel C, Borgland SL. Hypocretin modulation of druginduced synaptic plasticity. Prog Brain Res. 2012;198:123-
31. doi: 10.1016/b978-0-444-59489-1.00008-2.
47. Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The 
potential role of the orexin reward system in future treatments 
for opioid drug abuse. Brain Res. 2020;1731:146028. doi: 
10.1016/j.brainres.2018.11.023.
48. Schmeichel BE, Herman MA, Roberto M, Koob GF. Hypocretin 
neurotransmission within the central amygdala mediates 
escalated cocaine self-administration and stress-induced 
reinstatement in rats. Biol Psychiatry. 2017;81(7):606-15. doi: 
10.1016/j.biopsych.2016.06.010.
49. Harvey JA. Cocaine effects on the developing brain: current 
status. Neurosci Biobehav Rev. 2004;27(8):751-64. doi: 
10.1016/j.neubiorev.2003.11.006.
50. James MH, Stopper CM, Zimmer BA, Koll NE, Bowrey 
HE, Aston-Jones G. Increased number and activity of a 
lateral subpopulation of hypothalamic orexin/hypocretin 
neurons underlies the expression of an addicted state in 
rats. Biol Psychiatry. 2019;85(11):925-35. doi: 10.1016/j.
biopsych.2018.07.022.
51. España RA, Oleson EB, Locke JL, Brookshire BR, Roberts 
DC, Jones SR. The hypocretin-orexin system regulates 
cocaine self-administration via actions on the mesolimbic 
dopamine system. Eur J Neurosci. 2010;31(2):336-48. doi: 
10.1111/j.1460-9568.2009.07065.x.
52. Borgland SL, Chang SJ, Bowers MS, Thompson JL, 
Vittoz N, selectively promotes motivation for positive reinforcers. 
J Neurosci. 2009;29(36):11215-25. doi: 10.1523/
jneurosci.6096-08.2009.
53. Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, 
Antolini M, et al. Functional magnetic resonance imaging 
reveals different neural substrates for the effects of orexin-1 and 
orexin-2 receptor antagonists. PLoS One. 2011;6(1):e16406. 
doi: 10.1371/journal.pone.0016406.
54. Hutcheson DM, Quarta D, Halbout B, Rigal A, Valerio E, 
Heidbreder C. Orexin-1 receptor antagonist SB-334867 
reduces the acquisition and expression of cocaine-conditioned 
reinforcement and the expression of amphetamineconditioned reward. Behav Pharmacol. 2011;22(2):173-81. 
doi: 10.1097/FBP.0b013e328343d761.
55. Prince CD, Rau AR, Yorgason JT, España RA. Hypocretin/
orexin regulation of dopamine signaling and cocaine selfadministration is mediated predominantly by hypocretin 
receptor 1. ACS Chem Neurosci. 2015;6(1):138-46. doi: 
10.1021/cn500246j.
56. Gentile TA, Simmons SJ, Barker DJ, Shaw JK, España RA, 
Muschamp JW. Suvorexant, an orexin/hypocretin receptor 
antagonist, attenuates motivational and hedonic properties 
of cocaine. Addict Biol. 2018;23(1):247-55. doi: 10.1111/
adb.12507.
57. Muschamp JW, Hollander JA, Thompson JL, Voren G, 
Hassinger LC, Onvani S, et al. Hypocretin (orexin) facilitates 
reward by attenuating the antireward effects of its cotransmitter 
dynorphin in ventral tegmental area. Proc Natl Acad Sci U S 
A. 2014;111(16):E1648-55. doi: 10.1073/pnas.1315542111.
58. Foltin RW, Evans SM. Hypocretin/orexin antagonists decrease 
cocaine self-administration by female rhesus monkeys. 
Drug Alcohol Depend. 2018;188:318-27. doi: 10.1016/j.
drugalcdep.2018.04.018.
59. Fadel J, Deutch AY. Anatomical substrates of orexindopamine interactions: lateral hypothalamic projections to 
the ventral tegmental area. Neuroscience. 2002;111(2):379-
87. doi: 10.1016/s0306-4522(02)00017-9.
60. Fadel J, Deutch AY. Anatomical substrates of orexindopamine interactions: lateral hypothalamic projections to 
the ventral tegmental area. Neuroscience. 2002;111(2):379-
87. doi: 10.1016/s0306-4522(02)00017-9.
61. McPherson CS, Featherby T, Krstew E, Lawrence AJ. 
Quantification of phosphorylated cAMP-response elementbinding protein expression throughout the brain of 
amphetamine-sensitized rats: activation of hypothalamic 
orexin A-containing neurons. J Pharmacol Exp Ther. 
2007;323(3):805-12. doi: 10.1124/jpet.107.125732.
62. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, 
Yanagisawa M, et al. Fos expression in orexin neurons varies 
with behavioral state. J Neurosci. 2001;21(5):1656-62. doi: 
10.1523/jneurosci.21-05-01656.2001.
63. Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder 
C. The orexin-1 receptor antagonist SB-334867 reduces 
amphetamine-evoked dopamine outflow in the shell of 
the nucleus accumbens and decreases the expression of 
amphetamine sensitization. Neurochem Int. 2010;56(1):11-5. 
doi: 10.1016/j.neuint.2009.08.012.
64. Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder 
C. The orexin-1 receptor antagonist SB-334867 reduces 
amphetamine-evoked dopamine outflow in the shell of 
the nucleus accumbens and decreases the expression of 
amphetamine sensitization. Neurochem Int. 2010;56(1):11-5. 
doi: 10.1016/j.neuint.2009.08.012.
65. Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, et al. 
Orexins contribute to restraint stress-induced cocaine relapse 
by endocannabinoid-mediated disinhibition of dopaminergic 
neurons. Nat Commun. 2016;7:12199. doi: 10.1038/
ncomms12199.
66. Bentzley BS, Aston-Jones G. Orexin-1 receptor signaling 
increases motivation for cocaine-associated cues. Eur J 
Neurosci. 2015;41(9):1149-56. doi: 10.1111/ejn.12866.
67. Gentile TA, Simmons SJ, Watson MN, Connelly KL, Brailoiu E, 
Zhang Y, et al. Effects of suvorexant, a dual orexin/hypocretin 
receptor antagonist, on impulsive behavior associated with 
cocaine. Neuropsychopharmacology. 2018;43(5):1001-9. 
doi: 10.1038/npp.2017.158.
68. Levy KA, Brodnik ZD, Shaw JK, Perrey DA, Zhang Y, España 
RA. Hypocretin receptor 1 blockade produces bimodal 
modulation of cocaine-associated mesolimbic dopamine 
signaling. Psychopharmacology (Berl). 2017;234(18):2761-
76. doi: 10.1007/s00213-017-4673-y.
69. Flores Á, Maldonado R, Berrendero F. The hypocretin/
orexin receptor-1 as a novel target to modulate cannabinoid 
reward. Biol Psychiatry. 2014;75(6):499-507. doi: 10.1016/j.
biopsych.2013.06.012.
70. Khoo SY, McNally GP, Clemens KJ. The dual orexin receptor 
antagonist TCS1102 does not affect reinstatement of nicotineseeking. PLoS One. 2017;12(3):e0173967. doi: 10.1371/
journal.pone.0173967.
71. Plaza-Zabala A, Flores Á, Maldonado R, Berrendero 
F. Hypocretin/orexin signaling in the hypothalamic 
paraventricular nucleus is essential for the expression of 
nicotine withdrawal. Biol Psychiatry. 2012;71(3):214-23. doi: 
10.1016/j.biopsych.2011.06.025.
72. Brown RM, Lawrence AJ. Ascending orexinergic pathways 
and alcohol-seeking. Curr Opin Neurobiol. 2013;23(4):467-
72. doi: 10.1016/j.conb.2013.02.014.
73. Lawrence AJ. Regulation of alcohol-seeking by orexin 
(hypocretin) neurons. Brain Res. 2010;1314:124-9. doi: 
10.1016/j.brainres.2009.07.072.
74. Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. 
Multiple roles for orexin/hypocretin in addiction. Prog Brain 
Res. 2012;198:79-121. doi: 10.1016/b978-0-444-59489-
1.00007-0.
75. Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp 
JW, Patkar O, et al. Orexin/hypocretin role in reward: 
implications for opioid and other addictions. Br J Pharmacol. 
2015;172(2):334-48. doi: 10.1111/bph.12639.
76. Olney JJ, Navarro M, Thiele TE. Binge-like consumption 
of ethanol and other salient reinforcers is blocked by 
orexin-1 receptor inhibition and leads to a reduction of 
hypothalamic orexin immunoreactivity. Alcohol Clin Exp 
Res. 2015;39(1):21-9. doi: 10.1111/acer.12591.
77. Morganstern I, Chang GQ, Barson JR, Ye Z, Karatayev O, 
Leibowitz SF. Differential effects of acute and chronic ethanol 
exposure on orexin expression in the perifornical lateral 
hypothalamus. Alcohol Clin Exp Res. 2010;34(5):886-96. doi: 
10.1111/j.1530-0277.2010.01161.x.
78. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. 
The orexin system regulates alcohol-seeking in rats. Br J 
Pharmacol. 2006;148(6):752-9. doi: 10.1038/sj.bjp.0706789.
79. Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, 
Yi H, et al. The dual orexin/hypocretin receptor antagonist, 
almorexant, in the ventral tegmental area attenuates ethanol 
self-administration. PLoS One. 2012;7(9):e44726. doi: 
10.1371/journal.pone.0044726.
80. Mayannavar S, Rashmi KS, Rao YD, Yadav S, Ganaraja B. 
Effect of Orexin A antagonist (SB-334867) infusion into the nucleus accumbens on consummatory behavior and alcohol 
preference in Wistar rats. Indian J Pharmacol. 2016;48(1):53-
8. doi: 10.4103/0253-7613.174528.
81. Barson JR, Ho HT, Leibowitz SF. Anterior thalamic 
paraventricular nucleus is involved in intermittent access 
ethanol drinking: role of orexin receptor 2. Addict Biol. 
2015;20(3):469-81. doi: 10.1111/adb.12139.
82. Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/
hypocretin-1 receptor antagonism reduces ethanol selfadministration and reinstatement selectively in highlymotivated rats. Brain Res. 2017;1654(Pt A):34-42. doi: 
10.1016/j.brainres.2016.10.018.
83. Dhaher R, Hauser SR, Getachew B, Bell RL, McBride WJ, 
McKinzie DL, et al. The orexin-1 receptor antagonist SB334867 reduces alcohol relapse drinking, but not alcoholseeking, in alcohol-preferring (P) rats. J Addict Med. 
2010;4(3):153-9. doi: 10.1097/ADM.0b013e3181bd893f.
84. Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The 
highly selective orexin/hypocretin 1 receptor antagonist 
GSK1059865 potently reduces ethanol drinking in ethanol 
dependent mice. Brain Res. 2016;1636:74-80. doi: 10.1016/j.
brainres.2016.01.049.
85. Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of 
suvorexant on event-related oscillations and EEG sleep in rats 
exposed to chronic intermittent ethanol vapor and protracted 
withdrawal. Sleep. 2019;42(4):zsz020. doi: 10.1093/sleep/
zsz020.
86. Hoch M, Hay JL, Hoever P, de Kam ML, te Beek ET, van 
Gerven JM, et al. Dual orexin receptor antagonism by 
almorexant does not potentiate impairing effects of alcohol 
in humans. Eur Neuropsychopharmacol. 2013;23(2):107-17. 
doi: 10.1016/j.euroneuro.2012.04.012.
87. Steiner MA, Lecourt H, Strasser DS, Brisbare-Roch C, Jenck 
F. Differential effects of the dual orexin receptor antagonist 
almorexant and the GABA(A)-α1 receptor modulator zolpidem, 
alone or combined with ethanol, on motor performance in 
the rat. Neuropsychopharmacology. 2011;36(4):848-56. doi: 
10.1038/npp.2010.224.
88. Calipari ES, España RA. Hypocretin/orexin regulation 
of dopamine signaling: implications for reward and 
reinforcement mechanisms. Front Behav Neurosci. 2012;6:54. 
doi: 10.3389/fnbeh.2012.00054.
89. Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin 
receptors in the ventral tegmental area on acquisition 
and expression of morphine-induced conditioned place 
preference in the rats. Neuropeptides. 2017;66:45-51. doi: 
10.1016/j.npep.2017.08.003.
90. Hooshmandi M, Hosseinmardi N, Janahmadi M, Khakpai F, 
Rohampour K, Doostmohammadi J. Antagonism of orexin 
type-1 receptors (OX1Rs) attenuates naloxone-precipitated 
morphine withdrawal syndrome in rat dorsal hippocampus. 
Pharmacol Biochem Behav. 2017;158:39-48. doi: 10.1016/j.
pbb.2017.06.001.
91. Sharf R, Sarhan M, Dileone RJ. Orexin mediates the expression 
of precipitated morphine withdrawal and concurrent 
activation of the nucleus accumbens shell. Biol Psychiatry. 
2008;64(3):175-83. doi: 10.1016/j.biopsych.2008.03.006.
92. Davoudi M, Azizi H, Mirnajafi-Zadeh J, Semnanian S. The 
blockade of GABAA receptors attenuates the inhibitory effect 
of orexin type 1 receptors antagonist on morphine withdrawal 
syndrome in rats. Neurosci Lett. 2016;617:201-6. doi: 
10.1016/j.neulet.2016.02.022.
93. Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central 
blockade of orexin type 1 receptors reduces naloxone 
induced activation of locus coeruleus neurons in morphine 
dependent rats. Neurosci Lett. 2021;755:135909. doi: 
10.1016/j.neulet.2021.135909.
94. Fakhari M, Azizi H, Semnanian S. Central antagonism of orexin 
type-1 receptors attenuates the development of morphine 
dependence in rat locus coeruleus neurons. Neuroscience. 
2017;363:1-10. doi: 10.1016/j.neuroscience.2017.08.054.
95. Mousavi Y, Azizi H, Mirnajafi-Zadeh J, Javan M, Semnanian 
S. Blockade of orexin type-1 receptors in locus coeruleus 
nucleus attenuates the development of morphine dependency 
in rats. Neurosci Lett. 2014;578:90-4. doi: 10.1016/j.
neulet.2014.06.038.
96. Boutrel B, Steiner N, Halfon O. The hypocretins and the 
reward function: what have we learned so far? Front Behav 
Neurosci. 2013;7:59. doi: 10.3389/fnbeh.2013.00059.
97. Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE, 
Grigoriadis D, et al. Hypocretin receptor 2 antagonism dosedependently reduces escalated heroin self-administration in 
rats. Neuropsychopharmacology. 2015;40(5):1123-9. doi: 
10.1038/npp.2014.293.
98. Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri 
S. Effect of suvorexant on morphine tolerance and 
dependence in mice: role of NMDA, AMPA, ERK and CREB 
proteins. Neurotoxicology. 2021;84:64-72. doi: 10.1016/j.
neuro.2021.02.005.
99. Huhn AS, Finan PH, Gamaldo CE, Hammond AS, Umbricht A, 
Bergeria CL, et al. Suvorexant ameliorated sleep disturbance, 
opioid withdrawal, and craving during a buprenorphine 
taper. Sci Transl Med. 2022;14(650):eabn8238. doi: 10.1126/
scitranslmed.abn8238.
100. Łupina M, Tarnowski M, Baranowska-Bosiacka I, Talarek S, 
Listos P, Kotlińska J, et al. SB-334867 (an orexin-1 receptor 
antagonist) effects on morphine-induced sensitization in 
mice-a view on receptor mechanisms. Mol Neurobiol. 
2018;55(11):8473-85. doi: 10.1007/s12035-018-0993-0.
101. Hooshmand B, Azizi H, Javan M, Semnanian S. Intra-LC 
microinjection of orexin type-1 receptor antagonist SB334867 attenuates the expression of glutamate-induced opiate 
withdrawal like signs during the active phase in rats. Neurosci 
Lett. 2017;636:276-81. doi: 10.1016/j.neulet.2016.10.051.
102. Ebrahimian F, Naghavi FS, Yazdi F, Sadeghzadeh F, Taslimi 
Z, Haghparast A. Differential roles of orexin receptors 
within the dentate gyrus in stress- and drug priming-induced 
reinstatement of conditioned place preference in rats. Behav 
Neurosci. 2016;130(1):91-102. doi: 10.1037/bne0000112.
103. Porter-Stransky KA, Bentzley BS, Aston-Jones G. Individual 
differences in orexin-I receptor modulation of motivation for 
the opioid remifentanil. Addict Biol. 2017;22(2):303-17. doi: 
10.1111/adb.12323.
104. Berhow MT, Hiroi N, Nestler EJ. Regulation of ERK 
(extracellular signal regulated kinase), part of the neurotrophin 
signal transduction cascade, in the rat mesolimbic 
dopamine system by chronic exposure to morphine or 
cocaine. J Neurosci. 1996;16(15):4707-15. doi: 10.1523/
jneurosci.16-15-04707.1996.
105. Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado 
R, Caboche J. Involvement of the extracellular signalregulated kinase cascade for cocaine-rewarding 
properties. J Neurosci. 2000;20(23):8701-9. doi: 10.1523/
jneurosci.20-23-08701.2000.
106. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol 
JC, et al. Regulation of a protein phosphatase cascade allows 
convergent dopamine and glutamate signals to activate ERK 
in the striatum. Proc Natl Acad Sci U S A. 2005;102(2):491-6. doi: 10.1073/pnas.0408305102.
107. Shin HS, Cho HS, Sung KW, Yoon BJ. Orexin-A increases 
cell surface expression of AMPA receptors in the striatum. 
Biochem Biophys Res Commun. 2009;378(3):409-13. doi: 
10.1016/j.bbrc.2008.11.051.
108. Guo Y, Feng P. OX2R activation induces PKC-mediated ERK 
and CREB phosphorylation. Exp Cell Res. 2012;318(16):2004-
13. doi: 10.1016/j.yexcr.2012.04.015.
109. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of 
CREB. Trends Neurosci. 2005;28(8):436-45. doi: 10.1016/j.
tins.2005.06.005.
110. Nestler EJ, Aghajanian GK. Molecular and cellular basis of 
addiction. Science. 1997;278(5335):58-63. doi: 10.1126/
science.278.5335.58.
111. Riahi E, Khodagholi F, Haghparast A. Role of dorsal 
hippocampal orexin-1 receptors in associating morphine 
reward with contextual stimuli. Behav Pharmacol. 
2013;24(4):237-48. doi: 10.1097/FBP.0b013e3283635ee9.